"The best practices compiled show the commitment towards water conservation by different stakeholders. The case studies are concise and well presented. This book has a wealth of inspiring projects which are worthy of emulation."

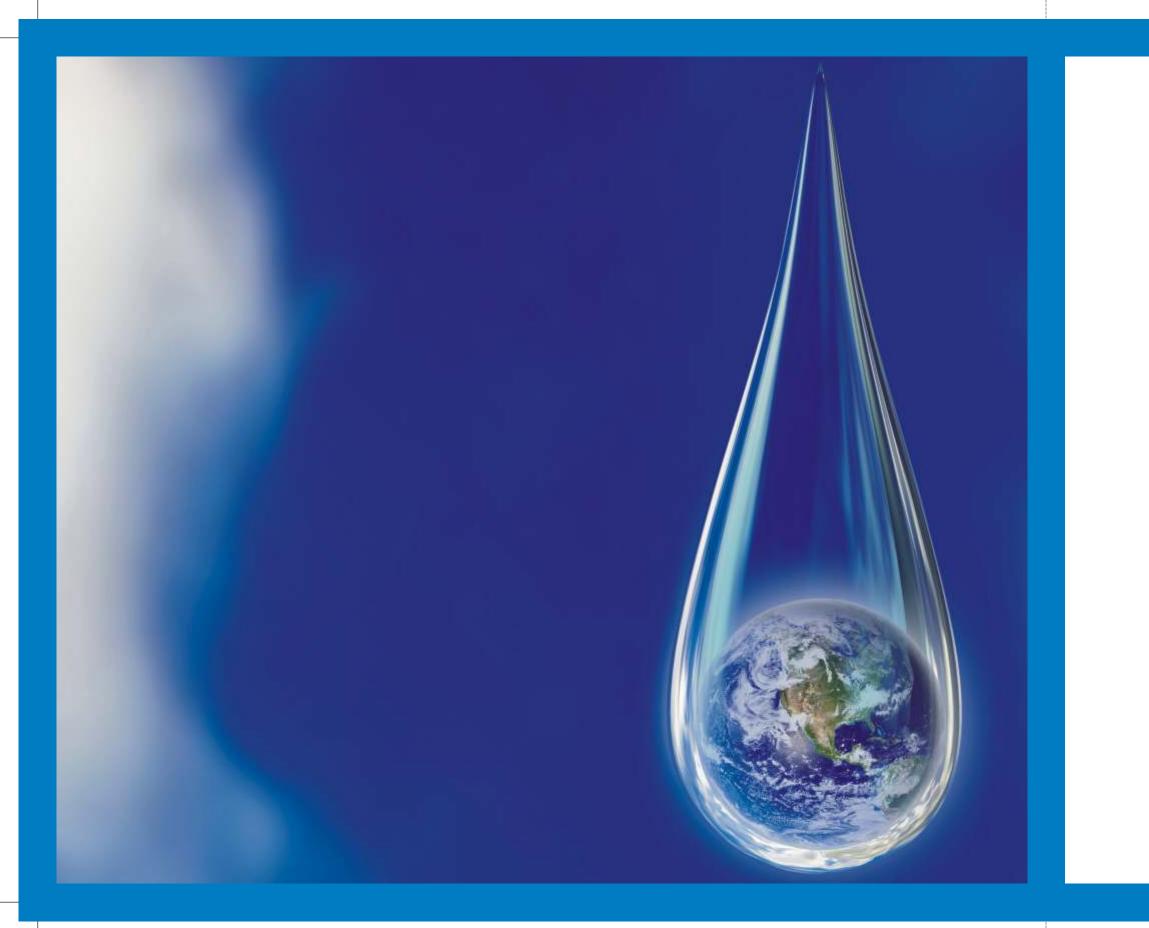
> Mr. Suresh Prabhu Chairman, Council for Energy, Environment and Water

"Our Cup of Joy is a unique compendium showcasing some of the best practices in water. The format is easy to understand and thought provoking. The case studies provide inspiration for promoting water conservation practices in the country."

> Mr. U N Panjiar Secretary, Ministry of Water Resources, Govt. of India

"This book is an excellent resource for industry. The case studies presented are comprehensive and easy to read. I am sure the compendium would assist Indian industry to adopt appropriate water saving strategies."

Mr. Jamshyd N Godrej Chairman and Managing Director, Godrej & Boyce Mfg Co. Ltd.


Confederation of Indian Industry Since 1895 Vol.

Our Cup of Joy India's Best Practices On Water

"As the global economy grows, so will its thirst. This is not an issue of rich or poor, north or south. All regions are experiencing the problem of water stress. There is still enough water for all of us but only so long as we keep it *clean*, use it more *wisely* and share it *fairly*.

Governments must engage and lead, and the private sector also has a role to play in this effort."

Ban Ki-Moon Secretary-General, United Nations, New York

First edition: October 2010

All rights reserved

No part of this publication may be reproduced, stored in retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the prior written permission from CII Water Institute.

While every care has been taken in compiling the Best Practices book, CII Water Institute accepts no claim for compensation with respect to any wrong, abbreviated, omitted or incorrectly inserted Published by: content in the book. The book is only an attempt to create awareness and share technologies on water conservation that have been adopted by various organizations.

The Best Practices book has been compiled using the inputs received from Government/Industry/ NGOs and others.

CII Water Institute C-32, First Floor, Pankaj Sindhvi Marg Lal Kothi Scheme, Near Vidhan Sabha Jaipur – 302015

Design, Editing, Typeset & Printing: f a b e s www.fables.in

Our
Cup
of Joy

About the CII WaterCom Logo

Holy water is usually received in cupped hands. This simple and elegant logo captures the need to conserve every drop of water.

Water has become a commodity of crucial importance, for all sectors. There is a need to take proactive measures for effective water management. All stakeholders need to actively participate in the water conservation movement. To enable the process, CII National Committee on Water has brought out an excellent publication on Water Conservation.

I am happy to mention that this book is an important milestone, to showcase some of the best practices implemented by different Organizations and Industry. This compendium will be an important resource and guide book for all stakeholders and can be easily adapted in your organization to facilitate efficient water management.

I congratulate Mr. Sanjeev Chadha for his leadership role and CII National Committee on Water in bringing out this excellent compendium.

Hari Bhartia President CII

Message

ndia will become the world's third largest economy in the world by 2050. With fast expanding economic growth, India faces an increasingly strident demand on its scarce natural resources such as water. India's finite and fragile water resources are stressed and depleting while various sectoral demands are growing rapidly.

Every cloud, they say, has a silver lining.

Well – if our impending water crisis is a dark, threatening cloud – then this compilation of WaterCom Best Practices is most definitely the welcome ray of hope.

Across our vast country, there are some outstanding examples of truly pioneering work on water management across sectors, with proven, and extremely impressive results. If we are able to replicate this work across our country and if we are able to convert these "islands of excellence" into oceans of positive change, I can assure you that our impending water crisis will be a thing of the past.

These WaterCom Best Practices have been chosen by experts with great care. Each one of them has delivered concrete and measurable results. Each one of us can learn, and hugely benefit from them. The amazing fact is that most of these WaterCom Best Practices can be replicated at a reasonable cost, with the benefits far outstripping the investments.

I urge you to look through this book with care, and do one of two things. One: Identify a couple of relevant WaterCom Best Practices, and adopt them in your organization, community or beyond. Join the ocean of change. Two: If you happen to know of work which is deserving to be part of the WaterCom Best Practices, please share it with us and add to "Our Cup of Joy".

Sanjeev Chadha Chairman **CII** WaterCom

Foreword

A best practice cannot be a best practice if it is not shared with, and adopted by others. Against each WaterCom Best Practice, you will see the name/s and contact of the Water Champions who made it possible. Each of our Water Champions is committed to sharing all information, and answering all your queries about his/her WaterCom Best Practice. Please do reach out to them to learn more about the best practices which you are planning to adopt.

Finally, if you are aware of good work done on water by your organization, or others – we are very keen to hear from you. Please send us candidates for WaterCom Best Practices as per the template used in the published case studies, to K.S.Venkatagiri, Principal Counselor, CII – Sohrabji Godrej Green Business Centre at k.s.venkatagiri@cii.in. If selected, we will definitely publish them in the second edition of "Our Cup of Joy".

How to use Our Cup of Joy

"Our Cup of Joy" is a compendium of the top 50 best practices on Water Management across our country. We call them the WaterCom Best Practices.

Each of the following pages showcases one such WaterCom Best Practice in simple, clear terms. It outlines the objective of the project, results achieved, the 'size of prize' if this WaterCom Best Practice were to be scaled up, and salient features of the project.

BEST PRACTICES IN WATER MANAGEMENT

Contents

Agriculture	2
Agriculture	4
Improved Water Management Practices for Sugarcane Cultivation WWF India	4
Improved Water Management Practices for Cotton Cultivation WWF India	6
Efficient Water and Pest Management through Bt Cotton Cultivation Monsanto India	8
Improved Water Management for Paddy Cultivation (Direct Seeding of Rice) PepsiCo India	10
Public Private Community Partnership for Sustainable Agriculture through Improved Water Efficiency Hindustan Coca-Cola Beverages Pvt. Ltd.	12
Improved Water Use Efficiency through Adoption of Drip Irrigation for Sugarcane Cultivation Bannari Amman Sugars Ltd., Erode District, Tamil Nadu	14
Improved Ground Water Recharge through Watershed Program Bannari Amman Sugars Ltd., Erode District, Tamil Nadu	16
Rural Water Supply & Sanitation	18
Participatory Watershed Management in Villages of Rajasthan ITC Rural Development Trust, Rajasthan	20
Effective Management of Land and Water for Improving Water Availability Hindalco Industries, Renukoot, UP	22
Use of Bio-sand Filter for Providing Safe Drinking Water Development Alternatives	24
Providing Safe Drinking Water through Rain Water Harvesting in Rural Rajasthan Safe Water Network	26

Enhancin Commun Jal Bhagira

Muni

Zero Liqui IL&FS Ltd.,

Enhancing Access to Safe Drinking Water in Villages through Public Private Community Partnership (Paniharan Pariyojna) Jal Bhagirathi Foundation	28
Providing Safe Drinking Water in Villages of Andhra Pradesh through Safe Water Stations Safe Water Network, Nizampalli Village, Andhra Pradesh	30
Sustainable Supply of Water in Villages of Rajasthan A. L. Paper House, Sanganer, Rajasthan	32
Developing Ponds in Low Lying Areas for Rain Water Harvesting Birla Corporation Ltd., Satna, Madhya Pradesh	34
Recharge of Groundwater through Community Check Dams PepsiCo India, Aurangabad District, Maharashtra	36
Water Conservation using Twin-Pit System Toilets Sulabh International	38
Provide Access to Water for School Children through Rain Water Harvesting (Ripple Effect) Coca-Cola India Ltd.	40
Municipality	42
Zero Liquid Discharge in Tannery Clusters through Common Effluent Treatment Plant IL&FS Ltd., Ambur and Vaniyambadi, Tamil Nadu	44
Zero Liquid Discharge in Textile Clusters through Common Effluent Treatment Plant IL&FS Ltd., Tirupur, Tamil Nadu	46
Drinking Water Supply and Sewage Network through Public Private Partnership (PPP) IL&FS Ltd., Tirupur, Tamil Nadu	48
Water Resource Management in Coimbatore Siruthuli, Coimbatore, Tamil Nadu	50
Saving Energy and Water by Adopting 24x7 Water Supply Concept Maharashtra Jeevan Pradhikaran	52

Contents

Building	54
Natural Treatment of Wastewater (Root Zone Treatment) Aquamall Water Solutions Ltd., Dehradun, Uttarakhand	56
Harvesting and Use of Rain Water in Commercial Building Wipro Ltd., Bengaluru, Karnataka	58
Waterless Urinals in Men's Washroom Paharpur Business Centre & Software Technology Incubator Park, New Delhi	60
Water Efficient Taps in Industrial Canteen Ashok Leyland, Hosur, Karnataka	62
Eliminate Water Consumption in Gents' Urinals PVR Cinemas	64
Industry	66
Rooftop Rain Water Harvesting System in Industry Saint Gobain, Chennai, Tamil Nadu	68
Use of Air-Cooled Condensers in Thermal Power Plants Aban Power Ltd., Tamil Nadu	70
Use of STP Treated Water in Cooling Tower Larsen & Toubro, Powai Campus, Mumbai	72
Reuse of De-inking and Coating Effluent in Paper Mills ITC Kovai, Tamil Nadu	74
Reuse of Filtrate Wastewater from Thickening Stock and Tertiary Screen Rejects in Paper Mills ITC Kovai, Tamil Nadu	76
Increase in Condensate Recovery Essar Steel Ltd., Hazira, Gujarat	78
Recycle of Filter Backwash Water Using Tube Settler ITC Ltd., Munger, Bihar	80

Reuse of ITC, Bhadra

Reuse of ThyssenKr

Effective IndoRama

Use of Ai JK Tyre & I

Reuse of Hospet Stee

Replacing Hindustan

Reuse of Hindustan

Reducing Installing J K Tyre &

Utilization Sterlite Indu

Installati Cipla Ltd.,

Use of Jet ITC Sahara

Zero Disc Chennai Pe

Installati Ion Exchar

Reuse of Essar Steel

Reuse of Reliance In

Reuse of D PepsiCo Ind

Cooling Water from Jet Condenser and Vacuum Pump rachalam, Andhra Pradesh	82
Process Wastewater in Metal Treatment Section rupp Electrical Steel Pvt. Ltd., Nashik, Maharashtra	84
Recovery and Use of Condensate from Chilled Water Coils of Air Handling Units Synthetics Ltd., Nagpur, Maharashtra	86
ir-Cooled Condensers and Plate Heat Exchangers for Water Saving Industries Ltd., Kankroli, Rajasthan	88
Gas Cleaning Plant Water to Reduce the Use of Soft Water eels, Koppal, Karnataka	90
g Underground Piping Network with Overhead System National Glass & Industries, Nashik, Maharashtra	92
Wastewater for Cullet Washing National Glass & Industries, Nashik, Maharashtra	94
g the Make up to Cooling Tower and Reducing the Load by g Heat Recovery System for Compressed Air Industries Ltd., Kankroli, Rajasthan	96
on of Reverse Osmosis (RO) Plant Reject Water for Toilet Flushing dustries, Silvassa, Dadra and Nagar Haveli	98
ion of Reverse Osmosis (RO) System for Reuse of Effluent Patalganga, Maharashtra	100
et Spray System for Maintaining Relative Humidity over Tobacco Bins anpur, Uttar Pradesh	102
charge Plant in Petroleum Refineries etroleum Corporation Ltd., Chennai	104
ion of Membrane System for Reuse and Recycling of Wastewater nge Ltd., Ankleshwar, Gujarat	106
Cooling Tower Blow Down Water from Power Plant Ltd., Surat, Gujarat	108
Cooling Tower Blow Down Water for Irrigation and Gardening ndustries Ltd., Dahej, Gujarat	110
`Rinse Water for Glass Bottle Washing Idia, Roha, Maharashtra	112

Agriculture

WaterCom Best Practices

Improved Water Management Practices for Sugarcane Cultivation WWF India

Furrow irrigation for sugarcane cultivation

Sugarcane field

Murli Dhar mdhar@wwfindia.net Ph: (011) 41504821

OBJECTIVE	Improved water management practices for sugarcane cultivation in Godavari Basin (Aurangabad district)
RESULTS	 Enhancement of sugarcane yield by 15-20% Water saving of 22.08 million m³/year (@ 2,760 m³/ha) in 8,000 ha
	 Additional profit of ₹ 93.6 million (about 30% increase in gross margin) among the farmers
	 Increase in water application efficiency (ratio of the volume of water stored in the root zone of the soil during irrigation to the volume of water applied) from 40 – 50% to 80 - 90%
SIZE OF PRIZE	• 2.75 billion m ³ /year of water savings in sugarcane cultivation
	 ₹ 11.7 billion additional income for farmers (Extrapolated for 1 million ha, which is 25% of total land under sugarcane cultivation in India)
HOW ACHIEVED	 A manual on Better Management Practices (BMP) for sugarcane cultivation developed and widely distributed among farmers
	 Better Management Practices adopted by farmers include:
	 Micro irrigation and straight furrow irrigation
	Use of bio pesticide
	 Integrated Nutrient Management
	 Dissemination of practices through training, workshops and field trial plots
	 Partnership developed with Water and Land Management Institute for developing Best Management Practices for sugarcane cultivation
	 Formation of farmer groups
	 Local research station, Govt. and District Agriculture Department involved in BMP demonstration and trials
	 Project executed under European Commission funded project - 'Thirsty Crop'


Improved Water Management Practices for Cotton Cultivation WWF India

Cotton field

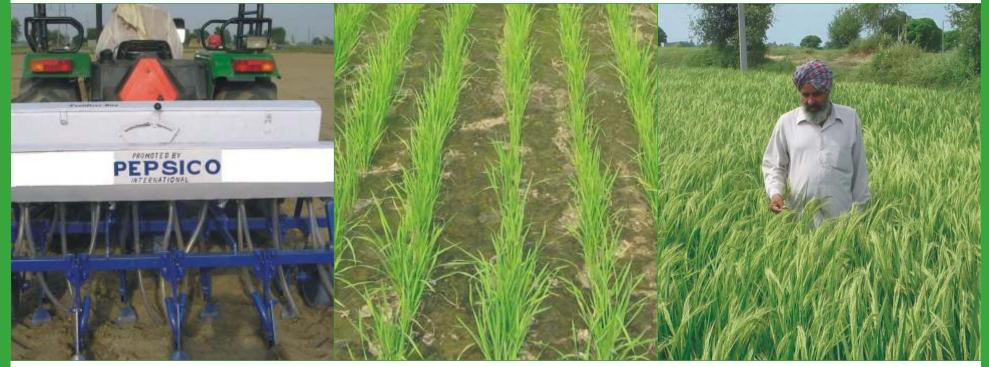
Woman collecting cotton

OBJECTIVE	Improved water management practices in cotton production in Andhra Pradesh and Maharashtra
RESULTS	 Implemented in 13,800 ha
	• Water saving of 0.97 million m ³ /year (@ 676.5 m ³ /ha)
	 Reduction in 26% fertilizer consumption and 50% pesticide consumption
SIZE OF PRIZE	1.7 billion m ³ /year of water savings in cotton cultivation (Extrapolated for 2.5 million ha, which is 25% of total land under cotton cultivation in India)
HOW ACHIEVED	 A manual on Better Management Practices about cotton prepared and distributed widely among farmers
	 Better Management Practices adopted by farmers include:
	 Micro irrigation and alternate furrow irrigation
	 Use of bio pesticide and soil moisture conservation
	• Mechanical practices for the control of pest population such as deep ploughing, pheromone traps etc.
	• Dissemination of technology through training workshops and field trials
	 Partnership developed with CRIDA, ICARA, grassroot NGOs like Mari and Krishi Vigyan Kendra
	 Local research station and district agriculture department are involved in demonstration of the practices and trials
	 Implemented under the European Commission funded project - 'Thirsty Crop'

Efficient Water and Pest Management through Bt Cotton Cultivation Monsanto India

Bollgard Bt cotton bolls

Cotton picking


Cotton ginning mill

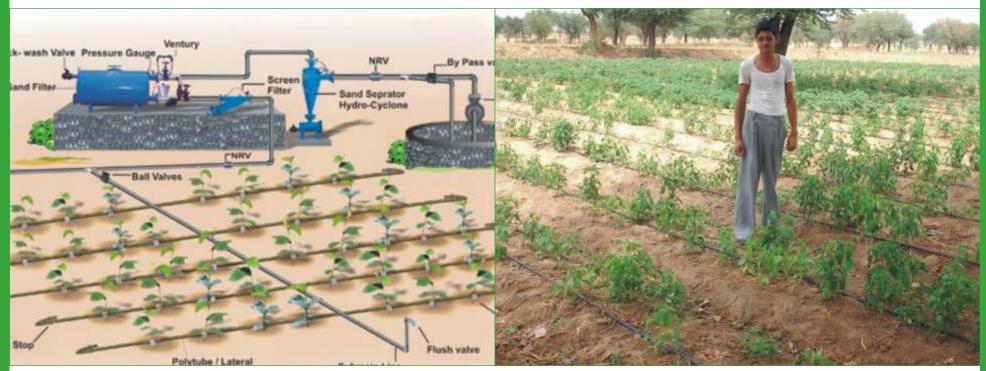
OBJECTIVE	Adopt more efficient water and pest management systems in cotton cultivation
RESULTS	• Bt cotton used by 5 million farmers has led to 48 billion litres of water saved in the last 7 years due to reduced pesticide usage
	 Total net saving of ₹ 40,000 million for the farmer (@ ₹ 3,125/hectare) on additional pesticide cost
SIZE OF PRIZE	 15 million m³ / year of water savings on cotton cultivation acreage 80% reduction in environmentally harmful pesticides (20,000 MT) National cotton production can double to produce 30 million bales/year resulting in additional income of ₹ 690,000 million/year
HOW ACHIEVED	 500 lts/hectare of water was used earlier to spray pesticide – fresh water can be saved by using Bt Cotton
	 Genetic technology within the cotton seed provides effective pest management
	 Additional investment for farmer: ₹ 750/hectare (1% of his total revenue)

Improved Water Management for Paddy Cultivation (Direct Seeding of Rice) PepsiCo India

Direct Seeding in progress

40 days Direct Seeding crop

120 days old crop



Amit Kumar Bose amit.kumar.bose@pepsico.com Mob: +91 98100 33077

OBJECTIVE	Sustainable farming technique in Paddy cultivation
RESULTS	 Implemented in 6,500 acres in Punjab, Rajasthan, Karnataka, Tamil Nadu and Puducherry
	• 5.3 million m ³ /year of water saved (@ 0.9 million litres/acre)
	 Total farmer cultivation cost reduction of ₹ 9.75 million (@ ₹ 1,500/acre)
	 Methane emission reduction by 75% - GHG reduced by 6,500 metric tons (@ 1 metric ton/acre)
	 Trials on multiple varieties show similar results in Direct Seeding of Rice as with traditional cultivation
SIZE OF PRIZE	 National water saving of about 95 billion m³/year and income generation of ₹ 150 billion/year
	• The potential is to replicate the technique in 100 million acres of land with 30% of water savings. This will also result in reduction of 100 million metric tons of Carbon equivalent greenhouse gases (@ 1 metric ton per acre)
HOW ACHIEVED	 Seeds are sown directly in fields without raising in the nursery
	Tractor driven Direct Seeding machine developed and used
	 New molecules for weed treatment identified and used
	 Farmers given free access to seeding machines and guided by field teams
	 Research on water usage and GHG emission reduction developed in partnership with IRRI and IARI
	 Developing expenditure: One time expenditure by PepsiCo India of ₹ 100 million (Over a period of 5 yrs on R&D, Direct Seeding machine, seeds, farmer training, information dissemination etc.)

- Public Private Community Partnership for Sustainable Agriculture through Improved Water Efficiency Hindustan Coca-Cola Beverages Pvt. Ltd.

Drip irrigation design

Farmer in his field

Praveen Aggarwal paggarwal@apac.ko.com Ph: (0124) 2348041

OBJECTIVE	Minimize usage of groundwater, build community awareness on conservation and introduce water-efficient agriculture by popularizing drip irrigation in Kaladera, Jaipur
RESULTS	 Over 0.1 million m³ groundwater conserved/year
	 Nearly 50% groundwater saving in irrigation
	 71% water saving by adhering to drip irrigation
	 Increased farm yield and income by over 40%
	 90 ha of land brought under drip irrigation
SIZE OF PRIZE	1 million m ³ of water savings (Extrapolated to 1,000 ha of land in the same district)
HOW ACHIEVED	 Multistakeholder Partnership: Coca-Cola, Netafim, Krishi Vigyan Kendra, Gram Panchayat, Community, Govt. of Rajasthan
	 Coca-Cola: Facilitation, coordination with stakeholders and providing funds
	 Netafim: Technical partner for installation of drip irrigation system and undertaking O&M for 3 years
	 Krishi Vigyan Kendra: Identification of farmers, technological assistance, monitoring and propagating best practices
	 Gram Panchayat: Mobilizing support of the farmers
	 Govt. of Rajasthan: Subsidy to farmers for installing drip irrigation system
	• Community: Farmers bore the capital cost and 200 farmers adopted the practice
	 Total cost: ₹ 20 million

Improved Water Use Efficiency through Adoption of Drip Irrigation for Sugarcane Cultivation Bannari Amman Sugars Ltd., Erode District, Tamil Nadu

Drip irrigation device

Sugarcane under drip irrigation

E. Manivel manivel@bannari.co.in Ph: (04295) 220363

OBJECTIVE	Improved water use efficiency through drip irrigation system for sugarcane cultivation at Erode district, Tamil Nadu
RESULTS	 2,708 hectares of land brought under drip irrigation
	 Drip irrigation systems saved 50% of water used
	 Fertigation through drip system direct to root zone, led to 25% saving of fertilizers
	 Cost of cultivation reduced by about ₹ 8,520/hectare in operations like weeding, interculture and irrigation
	• 7.3 million m ³ /year of water saved in sugarcane cultivation
SIZE OF PRIZE	2.7 billion m ³ of water savings in sugarcane cultivation (Extrapolated for 1 million ha, which is 25% of total land under sugarcane cultivation in India)
HOW ACHIEVED	 Project implemented in partnership with farmers
	 Suitable land/soil identified with farmers for drip irrigation practices
	 Micro irrigation company was assigned the task of implementing the project
	 BASL helped the farmers in getting the government subsidy
	 Total cost of project: ₹ 89.4 million shared by Govt. (33%), BASL (15%) and farmers (52%)

Improved Ground Water Recharge through Watershed Program Bannari Amman Sugars Ltd., Erode District, Tamil Nadu

Rain Water Harvesting structures

Dr. S. V. Balasubramaniam cmdoffice@bannari.com Ph: (0422) 230227/2300859

E. Manivel manivel@bannari.co.in Ph: (04295) 220363

OBJECTIVE	Ground water recharge through watershed program at Erode district, Tamil Nadu
RESULTS	 16 water harvesting structures constructed benefiting 680 farmers
	 An average of 6 to 9 meters of water level increased in wells in the adjoining areas
	• 3,079 acres of land have come under irrigation additionally
	 1 million m³/year of water harvested
	• Due to the increased water table, the farmers are able to cultivate crops in two seasons
SIZE OF PRIZE	On a conservative estimate, 100 similar locations exist in Tamil Nadu, where identical efforts can help in water harvesting of 100 million m ³ /year
HOW ACHIEVED	 Project implemented in PPCP mode with BASL, Govt. and farming community
	• Rain Water Harvesting structures are maintained by the water users association
	• The O&M expenses of the structures are met through auction of silt deposited ensuring the project sustainability (innovation)
	 The silt which is fertile is sold to nearby farmers
	 Control of soil erosion through planting of trees on bunds
	 Total cost of the project: ₹ 12.4 million shared by Govt. (70%), BASL (27%) and farmers (2%)

Rural Water Supply & Sanitation

WaterCom Best Practices

Participatory Watershed Management in Villages of Rajasthan ITC Rural Development Trust, Rajasthan

Water harvesting structure in Bhilwara district

OBJECTIVE	Improving the livelihood of villagers and eco restoration through participatory watershed management in Bhilwara district, Rajasthan
RESULTS	 508 ha of catchment land and 185 ha of pasture land developed
	 0.3 million m³ harvested through 33 harvesting structures
	 Generated employment opportunities for 90,000 people in the last 3 years resulting in total income of ₹ 0.81 million
	• 1,700 ha of land treated under watershed
SIZE OF PRIZE	 ₹ 20 million worth of employment generation and 0.5 million m³ of water harvesting potential
	 ₹ 30 million additional agricultural income by bringing additional land under irrigation and cultivation (Extrapolated to 5,000 ha of Bhilwara district)
HOW ACHIEVED	 The watershed project focuses on efficient water use, agri marketing and crop diversification
	 Pasture land developed for fodder and fuel wood
	 Water User Association and Self Help Groups (SHGs) formed
	 36 Self Help Groups linked to banks
	 1,100 households benefitted through improved agricultural practices
	 Capacity building watershed training programs and market linkage to farmers provided through existing networks of ITC's e-choupals
	 Cost of the project: ₹ 60 million
	 Cost sharing: 40 : 40 : 20 (Govt., Industry and Community)

Effective Management of Land and Water for Improving Water Availability Hindalco Industries, Renukoot, UP

Before and after construction of water irrigation channel and wells

Manoj Kumar Sinha manoj.k.sinha@adityabirla.com Ph: (05446) 252077-79

OBJECTIVE	Increase water availability in the selected 25 villages through optimal utilization of land and water in Renukoot, UP
RESULTS	 749 ha of wasteland has been rendered productive through social forestry
	 810 acres of land irrigated through 27 lift irrigation units
	 Adequate food availability for all 12 months in 25 villages
	 Additional income generated for 800 farmers - ₹ 23 million/year (@ ₹ 29,000 per farmer/year)
SIZE OF PRIZE	₹ 350 million/year of income generation in Sonbhadra district, UP (Extrapolated for 16,432 hectares of wasteland in Sonbhadra district, UP.)
HOW ACHIEVED	 Community awareness program on rain water conservation and better agriculture practices
	Agricultural expert interaction with farmers for crop selection
	 Construction of water channels, irrigation wells, Rain Water Harvesting structures and ponds
	 Formation of water committees for maintaining resources and equipment
	 User charges: ₹ 15-20 per hour
	 Total investment: ₹ 0.68 million

Use of Bio-sand Filter for Providing Safe Drinking Water

Development Alternatives

Women collecting clean water from Jal-TARA water filter

M. Manoj Kumar mkumar@devalt.org Ph: (011) 26806172

OBJECTIVE	Access to safe drinking water through use of bio-sand filter for providing safe drinking water [Nirmal Neer through TARA filter] in 10 villages of Bundelkhand - a green technology enterprise
RESULTS	 Provides 3,500 litres of safe drinking water/day/unit Benefitting 2,000 families in 10 villages Assured income for 3 people @ ₹ 3,500/month/unit Installed 13 units (sand filters) in 10 villages
SIZE OF PRIZE	Potential of 32.8 million m ³ /year of drinking water supply (Extrapolated for 15 million population in Bundelkhand region)
IOW ACHIEVED	 Developed slow sand filter through in-house R&D Works on the gravity flow, no requirement of electricity or chemicals Reduces turbidity from 50 NTU to less than 10 NTU Removes Coliform bacteria from 25-100 MPN per 100 ml to nil Reduces excessive iron to permissible limit of 0.3 mg /litre Life expectancy of the filter: 15 years Water sold at ₹ 1.50/12 litres Enterprise models for individual entrepreneur, community owned and managed have been developed Developed partnership with Arghyam and Indian Business Alliance on Water One time capital investment: ₹ 75,000 Payback period: 18 months

Н

Providing Safe Drinking Water through Rain Water Harvesting in Rural Rajasthan Safe Water Network

Household cisterns

Community cisterns


Better health and more school days

Ravindra Sewak rsewak@safewaternetwork.org Mob: +91 98185 45678

OBJECTIVE	To introduce improvements in design, water quality and funding models to create a sustainable and scalable safe water solution for water-stressed communities
RESULTS	 900 new household 'kunds' (Rain Water Harvesting cisterns) constructed, each with 15 m³ capacity
	• Restored 40 community 'kunds' (cistern capacity 40 m ³ to 400 m ³)
	 Benefitted more than 10,000 people across 40 villages in Churu, Rajasthan
	 Time saved in fetching water enables higher school attendance and livelihoods
	 Health and socio-economic impacts through improved quality/access to safe water
SIZE OF PRIZE	8.6 million m³/year of drinking water harvested through Rain Water Harvesting (Extrapolated for drinking water supply to 1,00,000 villages in India)
HOW ACHIEVED	 Loans for households through micro finance
	 Scalability through low-cost 'kunds' (RWH cisterns) with improved design
	 Improved water quality testing to establish water source and treatment needs
	 Trained masons in 40 villages
	 Storage cost: Approximately ₹ 1.5/litre
	 Investment: ₹ 30 million for 40 villages invested over 2 years

Enhancing Access to Safe Drinking Water in Villages through Public Private Community Partnership (Paniharan Pariyojna) Jal Bhagirathi Foundation

Before - women collecting water from long distances

After - household outlets for water collection

OBJECTIVE	To enhance access to safe drinking water and livelihood for the water-scarce desert communities in Rajasthan
RESULTS	 Improved health with considerable reduction in occurrence of water-borne diseases thereby increasing productive days
	 More than 2,500 people access safe drinking water for 15 paisa per litre
	 4 women entrepreneurs earn upto ₹ 4,000 per month just spending 3 to 4 hours per day
SIZE OF PRIZE	Potential of generating income of ₹ 8 million/year for women in Marwar region, Rajasthan (Extrapolated for 10% of villages in Marwar region)
HOW ACHIEVED	• Established community owned Reverse Osmosis plant in Pachpadra, Barmer district with Public Private Community Partnership (PPCP)
	• Filters raw water of 4,500 ppm to potable water of less than 300 ppm
	• Established household outlets owned and managed by women from Self Help Groups for effective delivery system
	 Partners: M/s Environze Global Ltd., Jal Bhagirathi Foundation, Gram Panchayat, Govt. of Rajasthan
	 Supported by UNDP, Italian Development Cooperation, Ripple Effect Project of Acumen Fund and IDEO

Providing Safe Drinking Water in Villages of Andhra Pradesh through Safe Water Stations Safe Water Network, Nizampalli Village, Andhra Pradesh

Safe water station

Ravindra Sewak rsewak@safewaternetwork.org Mob: +91 98185 45678

OBJECTIVE	Develop, implement and validate potential of scalable, low-cost "safe water stations" to ensure affordable, safe drinking water to the rural community in India
RESULTS	40,000 people have access to safe drinking water
SIZE OF PRIZE	Potential to provide safe drinking water to 300 million rural people in India
HOW ACHIEVED	 Loans for safe water stations through micro finance and/or through grants
	 RO plant is set up to treat fluoride contaminated water
	 Community purchase water at a cost of ₹ 4 for 20 litres
	• RO plant is managed by community through water user associations
	 Funding from PepsiCo Foundation and Navajbai Ratan Tata Trust
	 Guidance for quality control program by PepsiCo India
	 The project will be replicated in 15 villages benefitting over 4,000 people
	 Investment: ₹ 15 million for 15 villages invested over 3 years

Sustainable Supply of Water in Villages of Rajasthan

A. L. Paper House, Sanganer, Rajasthan

Constructed water harvesting structure before rainfall

Runoff collected after rainfall

er, Rajasthan
ge water
ng
factories

Developing Ponds in Low Lying Areas for Rain Water Harvesting Birla Corporation Ltd., Satna, Madhya Pradesh

Rain Water Harvesting pond

Rajesh Kakkar kakkar@satnacement.com Ph: (07672) 412460

OBJECTIVE	Construction of Nai Basti Pond (Stop Dam) for Rain Water Harvesting in Satna, Madhya Pradesh
RESULTS	 Project is beneficial for nearby slum dwellers Increase in groundwater table in the area Water harvesting potential of around 10,000 m³/year
SIZE OF PRIZE	0.5 million m ³ /year of Rain Water Harvesting potential (Extrapolated to cement plants located in rural and dry areas. Among 170 cement plants in India, at least 50 plants are located in the states of Andhra Pradesh, Rajasthan and Madhya Pradesh.)
HOW ACHIEVED	 Construction of pond in naturally low lying areas Type of pond: Storage-cum-percolation Construction material: Earthen Capacity: 10,000 m³ Project cost: ₹ 0.5 million

Recharge of Groundwater through Community Check Dams

PepsiCo India, Aurangabad District, Maharashtra

Check dam during construction

Check dam in Paithan

Annie Kishen annie.kishen@pepsico.com Ph: (0124) 2880699

OBJECTIVE	Recharge of groundwater through community check dams in Paithan, Aurangabad district, Maharashtra
RESULTS	 13 check dams constructed harvesting 1.2 million m³/ year of water
	 100 recharge wells constructed harvesting 0.1 million m³/ year of water
	 12,000 people benefited
	 Farmers take two crops per year
SIZE OF PRIZE	Potential of harvesting 1.2 billion m^3 / year of rain water (Extrapolated to 1,000 potential sites in India)
HOW ACHIEVED	 Project implemented in partnership with Alternative Development Initiatives (ADI)
	 Gram Panchayat and community involved in the design and construction of check dam
	 Organized farmer training program and exposure visits to fields for understanding better agronomic practices
	 Desilting of ponds done through community participation
	 Water User Group formed to maintain the check dams

Water Conservation using Twin-Pit System Toilets Sulabh International

Twin-pit pour-flush toilet - a model

P-type trap

Dr. Bindeshwar Pathak sulabhinfo@gmail.com Mob: +91 98113 83937

OBJECTIVE	To reduce water consumption by replacing conventional toilets with twin-pit toilet system in independent houses and eliminate open defecation in India
RESULTS	 Constructed 1.2 million individual household toilets, resulting in 7 million m³ of water saving
	 1.5 million scavengers rehabilitated
SIZE OF PRIZE	5.84 million m ³ /year of water savings (Extrapolated to 1 million people living in mega cities in India)
IOW ACHIEVED	• Earlier conventional toilets were using 10-12 litres per flush with 40 mm water seal
	 Constructed twin-pit toilets where pits are used alternately
	 In individual toilets, when the first pit fills up, the excreta is switched over to another one
	• After two years, human excreta gets converted into manure in contact with earth at the bottom and also holes in the wall
	• The toilets are fitted with P-type trap of 20 mm water seal which requires only 1-1.5 litres per flush saving 8 litres per flush
	 The twin-pit toilet system could be used for individual houses and public toilet facilities
	 The cost for each twin-pit toilet ranges from ₹ 675 to ₹ 50,000

38

Provide Access to Water for School Children through Rain Water Harvesting (Ripple Effect) Coca-Cola India Ltd.

Training program for school children on Rain Water Harvesting

Praveen Aggarwal paggarwal@apac.ko.com Ph: (0124) 2348041

OBJECTIVE

RESULTS

To provide access to water for school children through Rain Water Harvesting (RWH) in India through Public Private Partnership

• Improved water management, hygiene and sanitation in select communities

- Over 10,000 m³ of water conserved through Rain Water Harvesting
- Improved access to drinking water to over 50,000 people

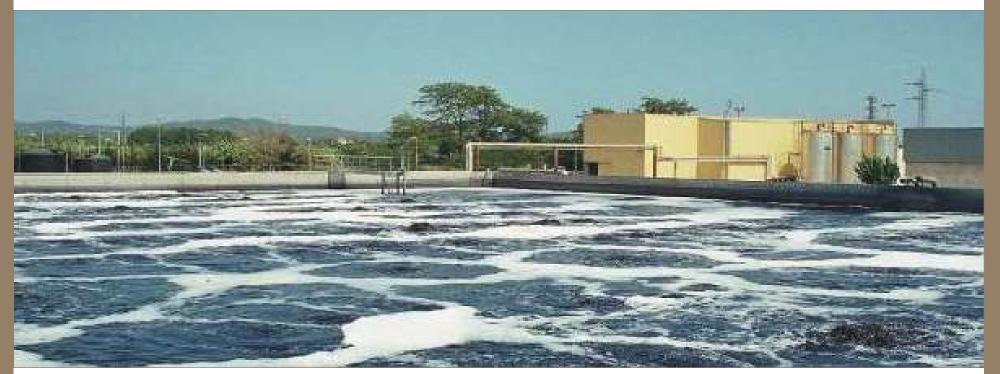
Potential to cover 1 million school children in the country

• Trained 300 teachers on promoting Rain Water Harvesting

SIZE OF PRIZE

HOW ACHIEVED

- Project implemented in partnership with UN-Habitat and Coca-Cola India Ltd.
- Promoted augmentation of the source through pilot demonstration of Rooftop Rain Water Harvesting (RWH) system in schools
- Project implementation involved the following activities:
 - Organized stakeholders' consultations with Principals, teachers and representatives of parent-teacher associations for developing project implementation plan
 - Identification of 16 schools in four project cities
 - Developed site-specific design for construction of Rain Water Harvesting system
 - Developed training manual on O&M of RWH system
 - Total cost of the project: ₹ 5,625,000 shared by UN-Habitat, Coca-Cola India and Lake Conservation Authority (LCA) of Madhya Pradesh



Municipality

WaterCom Best Practices

Zero Liquid Discharge in Tannery Clusters through Common Effluent Treatment Plant

IL&FS Ltd., Ambur and Vaniyambadi, Tamil Nadu

Common effluent treatment plant

Sameer Vyas md@ilfswater.com Ph: (044) 43443333

OBJECTIVE	Implementation of effluent recycling for leather industries in Ambur and Vaniyambadi, Tamil Nadu
RESULTS	 Recovery of 85% of water for reuse in process by user industry Reduction in water consumption and improved groundwater availability 7,000 m³/day wastewater treated
SIZE OF PRIZE	21 million m ³ /year of water savings (Extrapolated to 10% of tannery clusters, treating and reusing wastewater)
HOW ACHIEVED	 7,000 m³/day wastewater recycled Treatment process installed at Common Effluent Treatment Plant (CETP) includes: Membrane Bio Reactor (MBR) based pre treatment Followed by two stage RO process Wastewater evaporated for salt recovery Treated water supplied to industries Investment: About ₹ 970 million

Zero Liquid Discharge in Textile Clusters through Common Effluent Treatment Plant IL&FS Ltd., Tirupur, Tamil Nadu

Common effluent treatment plant

Sameer Vyas md@ilfswater.com Ph: (044) 43443333

OBJECTIVE	Implementation of Common Effluent Treatment Plant on ZLD basis for over 230 textile dyeing and bleaching units in Tirupur, Tamil Nadu to eliminate environmental pollution being caused by industrial effluent discharge
RESULTS	 Recovery of 85% of water for reuse in process by user industry Recovery of salt for reuse process by user industry Reduced sludge generation resulting in lower solid waste About 53,000 m³/day of textile effluent being treated
SIZE OF PRIZE	160 million m ³ /year of water savings (Extrapolated to 10 textile clusters in India)
HOW ACHIEVED	 53,000 m³/day of effluent generated Treatment process installed at Common Effluent Treatment Plant (CETP) includes: Pre treatment followed by two stage RO process Recovered water used for process RO reject evaporated for salt recovery Process chosen based on extensive technology search and cost optimization for the selected process Investment: ₹ 4,500 million

Drinking Water Supply and Sewage Network through Public Private Partnership (PPP)

IL&FS Ltd., Tirupur, Tamil Nadu

Drinking water treatment plant

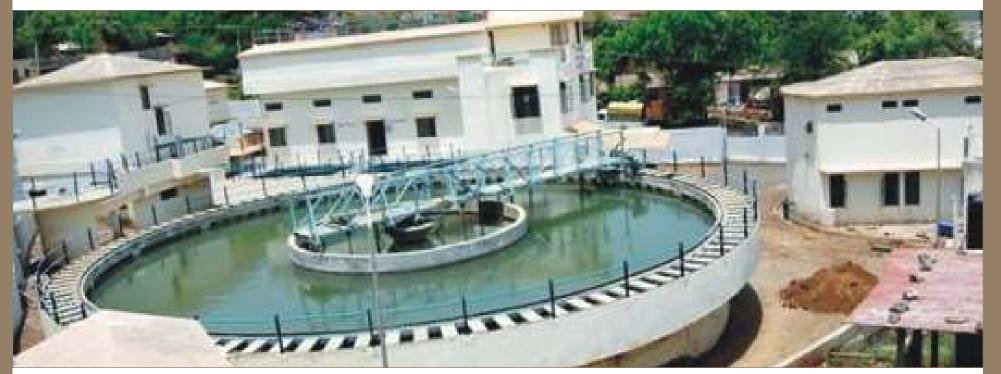
Sameer Vyas md@ilfswater.com Ph: (044) 43443333

OBJECTIVE	Construction of facilities to provide reliable and quality water supply from Cauvery river and construction of sewage network for the industries and households in Tirupur Local Planning Area (TLPA)
RESULTS	 Developed a network to extract 185,000 m³/day of water from Cauvery, treated and supplied to households and industries
	 Reduced environmental pollution by integral collection, treatment and disposal of sewage of 30,000 m³/day
	 Generated employment for about 0.2 million people
	• Over 1.5 million people covered, along with 700 industrial units
	 Sanitation facilities in 100 slums
SIZE OF PRIZE	800 million m ³ /year of water savings (Extrapolated to wastewater generated by 900 Class I and Class II cities)
HOW ACHIEVED	• In 1990, due to acute urban infrastructure problems, the people of Tirupur and the Tirupur Exporters Association (TEA) asked the government to improve the basic infrastructure of the area
	 An MoU was signed between the Govt. of Tamil Nadu, IL&FS and Tirupur Exporters Association for development of the project
	 First water and sanitation project in the country implemented on a Public Private Partnership
	 New Tirupur Area Development Corporation Ltd. (NTADCL) was established as a Special Purpose Vehicle (SPV) for project implementation
	 Developed a network for extraction of 185 MLD water from Cauvery, to treat it and supply to Tirupur town planning area for industrial and domestic consumption
	 Developed a network for collecting and treating the sewage water from industries and households of the Tirupur town planning area
	 Reduced environmental pollution by integral collection, treatment and disposal of sewage of 30 MLD through sewage system covering 60% of the Tirupur town population
	 Financing from banks, financial institutions, equity investors including FDI
	 Cost of the project: ₹ 10.23 million

Water Resource Management in Coimbatore

Siruthuli, Coimbatore, Tamil Nadu

Work in progress -Nandangarai check dam Roadside Rain Water Harvesting structure Ariel view of Nandangarai check dam



Mylswami siruthuli@yahoo.com Ph: (0422) 4333301

OBJECTIVE	Address water problems of the Coimbatore region through better water resource management
RESULTS	 7 tanks desilted, resulting in 60,000 m³ of water storage 15,000 m³ capacity check dam constructed 150 Rain Water Harvesting structures constructed 600 open wells recharged through check dams
SIZE OF PRIZE	6 million m ³ /year of water savings (Extrapolated to 100 locations in Tamil Nadu)
HOW ACHIEVED	 Siruthuli formed by the corporates of Coimbatore to solve common water problems of the region Water resource management through
	• Desilting of water bodies
	 Restoration of river through check dams, and watershed management
	 Roadside Rain Water Harvesting structures created
	 Partnered with District Rural Development Agency (DRDA), Coimbatore and Central Ground Water Board (CGWB)

Saving Energy and Water by Adopting 24x7 Water Supply Concept

Maharashtra Jeevan Pradhikaran

Water treatment plant

V. R. Kalyankar cemjppn@rediffmail.com Ph: (020) 26127866

OBJECTIVE	Energy and water conservation by adopting 24x7 water supply system at Malkapur, Satara, Maharashtra
RESULTS	 330,000 KWH/year energy saved on account of stoppage of pumps 480 tons/year of CO₂ emission reduced 15, 300 m³/year groundwater pumping avoided 24x7 water supply for 4,000 households
SIZE OF PRIZE	Potential of 38 million m ³ /year of groundwater savings (Extrapolated to 246 municipalities with similar issues in Maharashtra)
HOW ACHIEVED	 Earlier drinking water was supplied through bore wells (private and panchayat owned) 24x7 water supply system introduced to pump water from nearby river (River Koyna) To avoid leaks and reduce pressure loss, High Density Polyethylene (HDPE) and Medium Density Polyethylene (MDPE) pipes and fittings were used Telescopic rates for water usage fixed (with higher rates for higher consumption) to encourage water conservation 100% water supply points metered Awareness in use of water through mahila melas and door-to-door campaigns Total capital investment: ₹ 119 million (90% borne by state and 10% by consumers) Scheme self sustaining with ₹ 6.0 million annual revenue and O&M expenses of ₹ 5.50 million/year

Building

WaterCom Best Practices

Natural Treatment of Wastewater (Root Zone Treatment) Aquamall Water Solutions Ltd., Dehradun, Uttarakhand

Plants (Canna, Cyperus, Colocasia) grown for Root Zone Treatment

Dr. S K Sankar sankarsk@eureka.forbes.co.in Mob: +91 9368069700

Dr. Ajit ajit.naturalsolutions@gmail.com Mob: +91 9870423023

OBJECTIVE	Reuse of sewage water for irrigation purposes at Aquamall Water Solutions Ltd., Dehradun, Uttarakhand
RESULTS	 7 m³/day of wastewater is treated naturally through living bodies (plants) and reused for irrigation purposes
	• The treatment area gives a picturesque garden-like appearance
	 No sludge generation
SIZE OF PRIZE	3 million m ³ /year of water savings
	[Extrapolated to 5% of new buildings (commercial and retail) coming up in India]
IOW ACHIEVED	 Wastewater generated from the facility diverted to underground septic tank
	 Anaerobic treatment in the septic tank
	 Treated water sent to Root Zone Treatment System
	 Root Zone Treatment System consists of a lined pond filled with coarse filter media, microbes and plants (Canna, Cyperus, Colocasia, Plumeria, Pisonia, Banana etc.)
	• These plants grow in wastewater and form an association with the bacteria to give an effective sewage treatment
	 Installation cost: ₹ 450,000
	• Average area required is 3-4 sq mts for 1 m ³ /day of wastewater

Harvesting and Use of Rain Water in Commercial Building Wipro Ltd., Bengaluru, Karnataka

Groundwater recharge pit

Rain Water Harvesting sump

Parameswaran Balasubramanian parameswaran.balasubramanian@wipro.com Mob: +91 98455 16893

OBJECTIVE	Use of harvested rain water for cooling tower, gardening, flushing and recharging groundwater at Wipro Ltd., Bengaluru, Karnataka
RESULTS	 7,000 m³/year of water harvested
	 ₹ 0.2 million of cost savings on fresh water
SIZE OF PRIZE	40 million m ³ /year of water harvesting potential in IT parks (Extrapolated to 10% of existing and new IT parks)
HOW ACHIEVED	 Rain water harvested from rooftops and storm water drains
	 Three underground sumps of 100 m³ capacity made for storing the rain water
	 Harvested water is filtered and used for cooling tower make up, gardening, flushing and groundwater recharge
	 Recharge pits and trenches have been made all over the campus for groundwater recharge
	 Investment: ₹ 0.27 million

Investment: ₹ 0.27 million

Waterless Urinals in Men's Washroom Paharpur Business Centre & Software Technology Incubator Park, New Delhi

Waterless urinals

Vikas Makkar vmakkar@pbcnet.com Ph: (011) 26207171

OBJECTIVE	Installation of waterless urinals in men's washroom at Paharpur Business Centre and Software Technology Incubator Park, New Delhi
RESULTS	Water savings of 0.75 m ³ /day
SIZE OF PRIZE	1.0 million m ³ /year of water savings (Extrapolated to 10% of installations of men's urinals in the country)
HOW ACHIEVED	 Installed 14 waterless urinals Cost of waterless urinal: ₹ 5,000 Ideal for new installations Incremental investment/urinal is ₹ 2,000

Water Efficient Taps in Industrial Canteen Ashok Leyland, Hosur, Karnataka

Foam type water tap

Foam type water taps installed in canteen

Chandrasekar P. S. Chandrasekar.PS@ashokleyland.com Ph: (04344) 407538

OBJECTIVE	Use of foam type water taps for reducing the water consumption in dining halls and all high consumption shops in Ashok Leyland, Hosur, Karnataka
RESULTS	 Water savings of 11,100 m³/year Savings of ₹ 0.2 million/year
SIZE OF PRIZE	0.7 million m ³ /year of water savings (Extrapolated for 10% of industrial canteens in the country)
HOW ACHIEVED	 Installed foam type water taps with conventional taps Installed 150 taps in the canteen Investment: ₹ 150,000 Cost savings: ₹ 215,000 Payback period: 8 months

Eliminate Water Consumption in Gents' Urinals PVR Cinemas

Waterless urinals with bio blocks

Bio-cleaner 'Blu Away'

Deepa Menon deepa.menon@pvrnest.org Mob: +91 98113 00540

Pramod Arora pramod.arora@pvrcinemas.com Ph: (0124) 4708100

OBJECTIVE	To use bio blocks to eliminate water use in gents' urinals across PVR Cinemas
RESULTS	 Water saving of about 101 m³/year/urinal Reduced wastewater generation and water pumping cost
SIZE OF PRIZE	Potential of 10 million m ³ /year of water savings (Scale up applicable to all buildings, shopping malls, restaurants, hotels and commercial establishments)
HOW ACHIEVED	 Bio-cleaner called 'Blue Away' used in cleaning the urinal Simplest process is to just place bio blocks in urinals and avoid water for flushing Cost of a bio block: ₹ 20/block/urinal Bio-cleaning solution at a cost of ₹ 18,000/year for improving the quality of bio block

WaterCom Best Practices

Rooftop Rain Water Harvesting System in Industry

Saint Gobain, Chennai, Tamil Nadu

Water reservoir for storing rain water

Gladson Baskaran gladson.baskaran@saint-gobain.com Ph: (044) 27160801

OBJECTIVECollection of rooftop rain water in a reservoirRESULTS• Water harvested: 1,50,000 m³/year
• Fresh water cost savings of ₹ 5 million/yearSIZE OF PRIZE150 million m³/year water harvesting potential
(Extrapolated to 1,000 manufacturing companies having a similar rooftop area)HOW ACHIEVED• Total rooftop area available for harvesting is 1,20,000 m²
• Average annual rainfall is 1,200 mm
• Runoff coefficient is 0.9
• Investment: ₹ 20 million
• Payback period: 48 months

Use of Air-Cooled Condensers in Thermal Power Plants

Aban Power Ltd., Tamil Nadu

Air-cooled condenser

P. S. Mathew mathew.ps@lancogroup.com Ph: (0435) 2451231/2451232

OBJECTIVE	Eliminate fresh water consumption using air-cooled condensers in place of conventional cooling towers
RESULTS	 Water savings of 2 million m³/year Saving of ₹ 63 million/year Reduction in water consumption by 2.4 m³/MW
SIZE OF PRIZE	188 million m ³ /year of water savings [Based on 70% of the CPPs in India (14,000 MW) which operate with wet cooling towers]
IOW ACHIEVED	 Installed air-cooled condensers in place of conventional cooling towers
	 Cost of the project: ₹ 150 million
	 Annual cost saving: ₹ 64 million
	 Payback period: 28 months

Use of STP Treated Water in Cooling Tower

Larsen & Toubro, Powai Campus, Mumbai

Sewage Treatment Plant

Manish Shah ShahMC@pgm.ltindia.com Mob: +91 98338 38601

OBJECTIVE	Use of water treated from Sewage Treatment Plant (STP) for cooling towers
RESULTS	 3800 m³/year of fresh water saved ₹ 0.6 million/year of cost saving
SIZE OF PRIZE	1 million m ³ /year of water savings (Extrapolated for 10% of new buildings in the country)
IOW ACHIEVED	 Installed STP to treat sewage @ 500 m³/day Treated water mixed with lake water Installed softener to reduce hardness Investment: ₹ 0.5 million Annual saving: ₹ 0.6 million

Reuse of De-inking and Coating Effluent in Paper Mills

ITC Kovai, Tamil Nadu

Water treatment plant

Clarifier

R. Nandha Kumaar r.nandhakumaar@itc.in Mob: +91 99944 07404

OBJECTIVE	Reuse of De-inking and Coating effluent for process applications
RESULTS	 1,70,000 m³/annum of effluent water is treated and reused in De-inking and Coating process
	 Cost saving of ₹ 1.2 million/year
	 Recovered fiber is also reused in the system
SIZE OF PRIZE	8 million m ³ /year of fresh water savings (Extrapolated to 50% out of 126 large/medium waste paper based mills @ 500 m ³ /day/mill across the country)
HOW ACHIEVED	• Earlier De-inking and Coating effluent was drained. Now mixed effluent is pumped into flash mixer
	 Treated using a newly installed clarification system for De-inking and Coating plant effluent with Poly Aluminium Chloride as flocculator
	 TSS reduction from 3,500 ppm to less than 200 ppm
	 Turbidity reduction from 2,500 NTU to less than 250 NTU
	 Investment: ₹ 2 million
	 Payback period: 20 months

Reuse of Filtrate Wastewater from Thickening Stock and Tertiary Screen Rejects in Paper Mills ITC Kovai, Tamil Nadu

Hydra screen

R. Nandha Kumaar r.nandhakumaar@itc.in Mob: +91 99944 07404

OBJECTIVE	Reuse of filtrate wastewater from thickening stock and tertiary screen rejects
RESULTS	 79,000 m³/year of effluent water is reused in place of fresh water Recovered stock (fiber) consistency increased from 2.5% to 20%
SIZE OF PRIZE	4 million m ³ /year of fresh water savings (Extrapolated to 50% out of 126 large/medium waste paper based mills @ 240 m ³ /day per mill across the country)
HOW ACHIEVED	• Earlier vibrating screens and side hill screens were used with output sludge consistency of only 2-2.5% with negligible water recovery
	 Replaced it with two hydra screens consisting of screw conveyor enclosed by a screen to avoid jamming of sludge
	 The consistency of the rejects increased from 2% to 20% which increased the filtrate quantity by 10 m³/hr
	 Investment: ₹ 1.2 million
	 Payback period: 26 months

Increase in Condensate Recovery

Essar Steel Ltd., Hazira, Gujarat

Condensate recovery pump

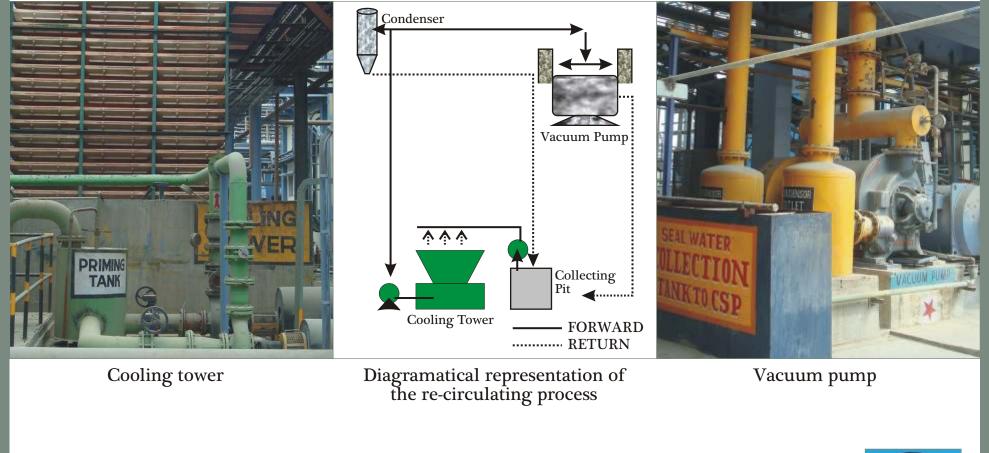
Alkesh Mendpara alkesh.mendpara@essar.com Ph: (0261) 6603820

OBJECTIVE	Reuse of condensate for make up to feed water in cold rolling mill section
RESULTS	• Saving 25,000 m ³ /year of fresh water which is 0.3% of total fresh water consumed
	 Saving of natural gas, 7.35 sm³/m³ of condensate recovery for preheating boiler feed water
SIZE OF PRIZE	1.5 million m ³ /year of fresh water saving potential (Extrapolated to the Indian iron and steel industry for 0.3% of total water consumption of 516,600 m ³ /year)
IOW ACHIEVED	 Earlier condensate was drained or sent to effluent treatment plant By installing condensate recovery pumps, water recovered and used for make up to feed water
	 Investment: ₹ 0.75 million
	 Saving: ₹ 1 million/year @ ₹ 42/m³ of soft water cost
	Payback period: 9 months

Recycle of Filter Backwash Water Using Tube Settler

ITC Ltd., Munger, Bihar

Tube Settlers


Balkrishna Arora balkrishna.arora@itc.in Mob: +91 99340 13367

OBJECTIVE	Reuse of filter backwash water from pretreatment section
RESULTS	 Water savings of 10,950 m³/year Complete saving of fresh water for backwash and recycled to raw water storage tank
SIZE OF PRIZE	4 billion m ³ /year of fresh water saving potential (Extrapolated to industrial fresh water consumption of 40 billion m ³ /day and a saving potential of 10% towards fresh water used in backwash)
HOW ACHIEVED	 Earlier backwash water taken to effluent treatment plant Installed tube settler plant for removal of total suspended solids and recycled back to raw water storage tank thereby reducing the fresh water intake Total cost of the project: ₹ 0.45 million Cost of water: ₹ 1.00/m³ Payback period: 18 months

Reuse of Cooling Water from Jet Condenser and Vacuum Pump

ITC, Bhadrachalam, Andhra Pradesh

OBJECTIVE	Reuse of jet condenser and vacuum pump water by re-circulating through cooling tower
RESULTS	 Water savings of 0.2 million m³/year Cost savings of ₹ 0.5 million/year
SIZE OF PRIZE	6 million m ³ /year of water savings across the paper industry (Extrapolated to several large-sized paper mills in India)
HOW ACHIEVED	 Earlier fresh water was used for cooling vapours from compact disc filters in jet condenser and vacuum pump This water was drained
	 A cooling tower was installed to recycle the water from jet condenser and vacuum pump
	 Investment: ₹ 0.2 million
	 Payback period: 5 months

Reuse of Process Wastewater in Metal Treatment Section

ThyssenKrupp Electrical Steel Pvt. Ltd., Nashik, Maharashtra

Wastewater treatment plant

Water before and after treatment

Vinayak Salunke vinayak.salunke@thyssenkrupp.com Ph: (02553) 2255182

OBJECTIVE	Reduce fresh water consumption by treating and reusing wastewater generated at the metal treatment section
RESULTS	 Saving of 65,000 m³/year of fresh water from total water consumption of 900 m³/day Cost savings of ₹ 2,50,000/year
SIZE OF PRIZE	6 million m ³ /year of water savings (Extrapolated to 100 similar plants having metal treatment sections)
HOW ACHIEVED	 Nearly 210 m³/day of alkaline wastewater treated through neutralisation, addition of settling agent, clariflocculation and passing through a sand and carbon filter and softener
	 175 m³/day of soft water recovered and reused
	 Investment: ₹ 0.2 million
	 Net annual saving: ₹ 0.25 million
	 Payback period: 10 months

Effective Recovery and Use of Condensate from Chilled Water Coils of Air Handling Units

IndoRama Synthetics Ltd., Nagpur, Maharashtra

Air Handling Units

Vinod B. Thaokar vinod.thaokar@indorama-ind.com Ph: (07104) 663651,663673

OBJECTIVE	Effective recovery and use of condensate from chilled water coils of Air Handling Units (AHUs)
RESULTS	 Water savings of 42,000 m³/year Cost savings of ₹ 1 million/year
SIZE OF PRIZE	40 million m ³ /year of water savings (Extrapolation based on 1,000 similar systems across the country)
HOW ACHIEVED	 Chilled water coils generate huge amount of condensate Previously it was drained Now condensate collected, treated using side stream filter for removal of suspended solids and diverted to cooling towers for make up

Use of Air-Cooled Condensers and Plate Heat Exchangers for Water Saving

Present System

JK Tyre & Industries Ltd., Kankroli, Rajasthan

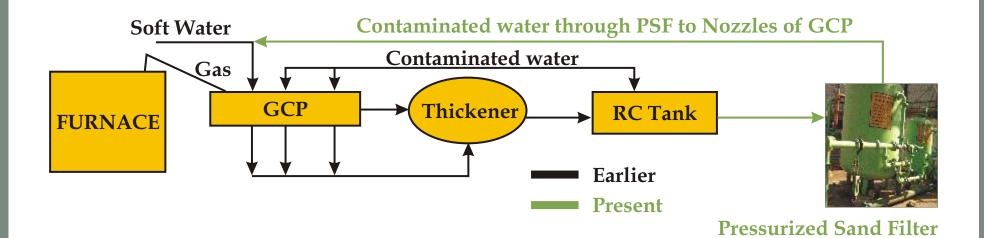
Earlier System

Cooling tower

Air-cooled condensers

Plate heat exchanger

D R Pai drpai@ktp.jkmail.com Mob: +91 97999 99904



OBJECTIVE	Installation of air-cooled condensers and plate heat exchangers instead of conventional cooling towers
RESULTS	 Water savings of 17,400 m³/year Cost savings of ₹ 0.3 million/year
SIZE OF PRIZE	35 million m ³ /year of water savings (Extrapolation based on 2,000 similar applications in process industry)
HOW ACHIEVED	 Earlier wet cooling towers were used Replaced with dry cooling towers (air-cooled condensers) 100% elimination of fresh water Installed plate heat exchanger for recovery of process heat Investment: ₹ 1.5 million Payback period: 60 months

Reuse of Gas Cleaning Plant Water to Reduce the Use of Soft Water

Hospet Steels, Koppal, Karnataka

Process of glass cleaning plant

Shailesh B Burde sbburde@hospetsteels.com Ph: (08539) 286603-05

OBJECTIVE	Reuse of Gas Cleaning Plant (GCP) water by re-circulating to reduce the consumption of soft water
RESULTS	 Water savings of 0.1 million m³/year Cost savings of ₹ 0.4 million/year
SIZE OF PRIZE	2 million m ³ /year of water saving potential (Extrapolated for 20 similar applications across the country)
HOW ACHIEVED	 Earlier 280 m³/day of wastewater drained from GCP re-circulation system. Equivalent amount of soft water was used as make up
	 Now part of the GCP re-circulation water is processed through pressure sand filter and reused
	 This avoids fresh water make up
	 Investment: ₹ 0.55 million
	 Payback period: 17 months

Replacing Underground Piping Network with Overhead System

Hindustan National Glass & Industries, Nashik, Maharashtra

Overhead water circulation system

OBJECTIVE	Reducing transportation losses by design and installation of new overhead water circulation system
RESULTS	 Water savings of 0.1 million m³/year Cost savings upto ₹ 1.2 million/year
SIZE OF PRIZE	100 million m ³ /year of water savings (Extrapolated to 1,000 manufacturing facilities)
IOW ACHIEVED	 Earlier 75% of piping network was underground, causing undetectable leakages
	 After thorough inspection of the network, new overhead piping network laid within 6 months
	 Water connection to the network started in overhead piping during annual shut down
	 Investment: ₹ 0.2 million
	 Payback period: 2 months

Reuse of Wastewater for Cullet Washing

Hindustan National Glass & Industries, Nashik, Maharashtra

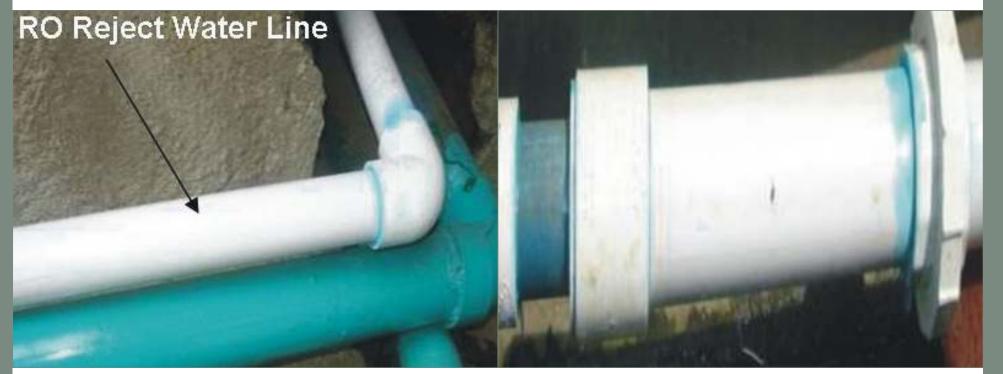
Wastewater tanks used for cullet washing

OBJECTIVE	Utilization of cooling tower blow down and reuse of drainwater
Objective	for cullet washing to reduce requirement of fresh water
RESULTS	 Savings of 50,000 m³/year
	 Cost savings of ₹ 0.5 million/year
SIZE OF PRIZE	1 million m ³ /year of water savings (Extrapolated to 20 glass manufacturing units across the country)
HOW ACHIEVED	 Earlier cooling tower blow down water was drained
	 Now blow down water used for washing cullet in a perforated circular drum
	• Wastewater from the drum is reused by treating with manual filter and alum
	 Investment: ₹ 0.2 million
	 Payback period: 5 months

Reducing the Make up to Cooling Tower and Reducing the Load by Installing Heat Recovery System for Compressed Air

JK Tyre & Industries Ltd., Kankroli, Rajasthan

Compressor house



OBJECTIVE	Elimination of water evaporation loss in cooling towers
RESULTS	 Water saved: 3,500m³ million litres/year Cost savings of ₹ 0.5 million/year Energy savings of ₹ 13.5 million/year
SIZE OF PRIZE	70 million m³/year of water savings (Similar potential exists for nearly 2,000 installations)
HOW ACHIEVED	 Recovered heat of compression by passing boiler feed water instead of rejecting the heat to the cooling towers
	 Investment: ₹ 15 million
	 Payback period: 12 months

Utilization of Reverse Osmosis (RO) Plant Reject Water for Toilet Flushing

Sterlite Industries, Silvassa, Dadra and Nagar Haveli

RO reject water line

Sameer Gupta sameer.gupta@vedanta.co.in Ph: (0260) 6612301

OBJECTIVE	Reverse Osmosis (RO) plant reject water to be used for toilet flushing
RESULTS	 Water savings of 3,650 m³/year Money savings of ₹ 0.2 million/year
SIZE OF PRIZE	4 million m ³ /year of water savings (Extrapolated to 1,000 RO applications all over the country)
HOW ACHIEVED	 Earlier RO reject water drained Simple piping arrangement along with a small pump made for diverting the water for toilet flushing
	 Investment: ₹ 15,000
	 Payback period: 1 month

Installation of Reverse Osmosis (RO) System for Reuse of Effluent

Cipla Ltd., Patalganga, Maharashtra

Reverse Osmosis plant

Anjani Kumar anjanikumar@cipla.com Ph: (02192) 304300

OBJECTIVE	Reuse of plant effluent using Reverse Osmosis (RO) system
RESULTS	 Water savings of 25,000 m³/year Cost savings of 0.7 million/year
SIZE OF PRIZE	3 million m ³ /year of water savings (Extrapolated to 100 similar pharmaceutical manufacturing units across the country)
HOW ACHIEVED	 Earlier all effluents sent to CETP for treatment Installed RO combined with existing double effect evaporator system for handling the reject
	 The treated effluent used for utilities Investment: ₹ 5 million
	 Investment: C5 minion Payback period: 89 months

Use of Jet Spray System for Maintaining Relative Humidity over Tobacco Bins

ITC Saharanpur, Uttar Pradesh

Jet sprays

OBJECTIVE	Use of jet spray system instead of traditional centrifugal systems
RESULTS	Water savings of 3,000 m ³ /year
SIZE OF PRIZE	3 million m ³ /year of water savings (Extrapolated to 1,000 manufacturing companies including tobacco and textile units requiring humidity control across the country)
HOW ACHIEVED	 Traditional centrifugal system to maintain relative humidity over tobacco bins
	 Earlier water sprayed manually
	 Jet sprays installed with compressed air and online relative humidity sensor
	 Water flow regulated using sensor
	 Investment: ₹ 5 million

Zero Discharge Plant in Petroleum Refineries

Chennai Petroleum Corporation Ltd., Chennai

Zero discharge plant

Reverse Osmosis and Ultra Filtration plant

OBJECTIVE	Conservation of fresh water and ensuring water security at Chennai Petroleum Corporation Ltd. refinery by treating and reusing the wastewater
RESULTS	 1.4 million m³/year of fresh water saved ₹ 40 million/year saved on account of avoiding fresh water
SIZE OF PRIZE	14.6 million m ³ /year of water savings equivalent to ₹ 720 million/year in refinery sector (Extrapolated for 18 refineries in India)
HOW ACHIEVED	 Installation of RO and UF combination for treating wastewater Economics O&M costs at ₹ 19/m³ Capital and Interest Repayment: ₹ 14/m³ (estimated) Fresh water cost: ₹ 60/m³ Net saving: ₹ 27/m³ Investment made: ₹ 105 million Payback period: 29 months

Installation of Membrane System for Reuse and Recycling of Wastewater

Ion Exchange Ltd., Ankleshwar, Gujarat

Reverse Osmosis plant

Hublikar VN vn.hublikar@ionexchange.co.in Ph: (02646) 302718

OBJECTIVE	Efficient water management and reduction in effluent generation
RESULTS	 Reduced fresh water consumption from 1,065 m³/day to 610 m³/day by recycle and reuse method
	 Savings of ₹ 10 million/year
SIZE OF PRIZE	 4 million m³/year of fresh water savings
	• ₹ 240 million/year savings in fresh water cost (Extrapolated to 25 manufacturing units in Ankleshwar area)
HOW ACHIEVED	 Earlier 1,065 m³/day fresh water consumed
	 Installed UF/RO system for treating 800 m³/day of wastewater having COD 600 ppm and TDS 2,500 ppm
	 Permeate @ 455 m³/day with TDS less than 20 ppm and COD 50 ppm recycled back to process in a closed loop
	 Fresh water saved: 455 m³/day and net cost saved @ ₹ 58/m³ after deducting cost to RO and ETP
	 Reject @ 250 m³/day with COD 5,000 ppm sent to ETP for treatment
	 Investment: ₹ 3.5 million
	 Payback period: 4 months

Reuse of Cooling Tower Blow Down Water from Power Plant

Essar Steel Ltd., Surat, Gujarat

Pond for collecting cooling tower water

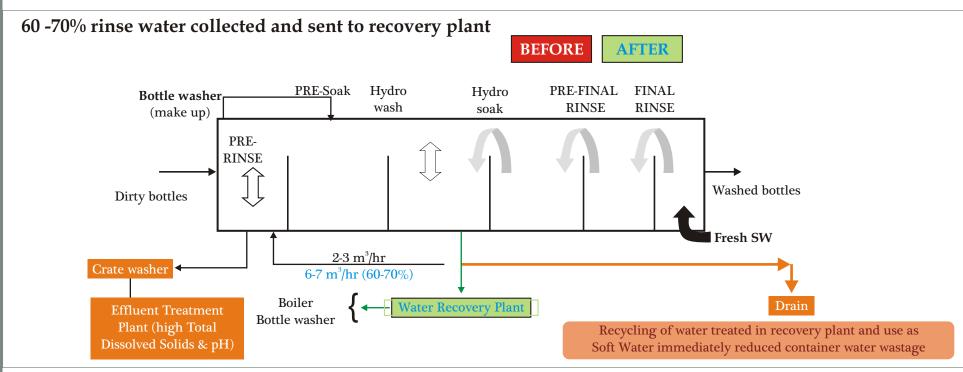
OBJECTIVE	"Effluent to Affluent"– reuse of cooling tower blow down water from power plant for make up to clarifier
RESULTS	 Water savings of 1.5 million m³/year
	 Cost savings of ₹ 18 million/year
	 Reduction in precipitation of deposits in cooling towers
	• Frequency of maintenance of cooling tower reduced to once in a year
SIZE OF PRIZE	11 million m ³ /year of fresh water savings (Extrapolated to the existing 7 integrated iron and steel plants across the country with an estimated fresh water requirement for make up to clarifier @ 4,500 m ³ /day for each plant)
HOW ACHIEVED	 Earlier soft water blow down at 4,500 m³/day from cooling tower at pH 9.5 - 10.0 discharged into river as blow down after neutralizing with sulfuric acid
	 Another stream of acidic water available from gas scrubbing and de-dusting is mixed with this alkaline cooling tower blow down in the clarifier instead of using fresh water for make up
	• The clear overflow water of clarifier at pH 8.0 is devoid of 80% of Ca and Mg salts reducing the formation of scale and frequency of cleaning in cooling towers
	 Investment: ₹ 5.5 million
	 Payback period: 4 months

Reuse of Cooling Tower Blow Down Water for Irrigation and Gardening

Reliance Industries Ltd., Dahej, Gujarat

Cooling tower blow down water used for gardening

Tapping points for water



Girish Patil girish.patil@ril.com Ph: 02641-283001

OBJECTIVETo use cooling tower blow down water for irrigation and gardeningRESULTS• 0.022 million m³/year of water savings
• ₹ 0.22 million/year of cost savingsSIZE OF PRIZE25 million m³/year of water savings
(Extrapolated to 1,000 large-sized plants across the country)HOW ACHIEVED• Earlier fresh water was used for gardening
• After lab tests, the cooling tower blow down water was found
suitable for use in gardens
• Suitable tapping points were provided for delivery of water
• Investment: ₹ 0.1 million
• Payback period: 5.5 months

Reuse of Rinse Water for Glass Bottle Washing

PepsiCo India, Roha, Maharashtra

Diagrammatical representation of Glass Bottle Washing Unit

OBJECTIVE Reuse of final rinse water for glass bottle wash line RESULTS • 0.2 million m³/year of water savings • 0.6 million/year of cost savings SIZE OF PRIZE 20 million m³/year of water savings (Extrapolated to 100 beverage manufacturing companies across the country) HOW ACHIEVED • Earlier rinse water drained away • Make up was done daily @ $450 \text{ m}^3/\text{day}$ • Presently 60 - 70% rinse water collected and sent to recovery plant • Fresh water make up reduced to $65 \text{ m}^3/\text{day}$ • Rinse water treated using weak acid cation combined with activated carbon filter sand filter, polishing unit and online UV and reused • Investment: ₹ 0.2 million for online UV treatment

• Payback period: 4 months

About the CII National Committee on Water (WaterCom)

The Confederation of Indian Industry (CII) is a non-government, not-for-profit, industry led and industry managed organization, playing a proactive role in India's development process.

"India@75: The Emerging Agenda", is a proactive initiative of CII to facilitate the acceleration in India's transformation into an economically vital, technologically innovative, socially and ethically vibrant global leader by year 2022.

In line with this national agenda, the CII National Committee on Water (WaterCom) catalyzes the move towards 'national water adequacy'. The initiatives of the committee includes sharing best practices, education & awareness, policy facilitation and recognizing & rewarding outstanding performances.