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The development of white organic light-emitting diodes1 (OLEDs)
holds great promise for the production of highly efficient large-
area light sources. High internal quantum efficiencies for the con-
version of electrical energy to light have been realized2–4.
Nevertheless, the overall device power efficiencies are still consid-
erably below the 60–70 lumens per watt of fluorescent tubes,
which is the current benchmark for novel light sources.
Although some reports about highly power-efficient white
OLEDs exist5,6, details about structure and the measurement con-
ditions of these structures have not been fully disclosed: the
highest power efficiency reported in the scientific literature is
44 lm W21 (ref. 7). Here we report an improved OLED structure
which reaches fluorescent tube efficiency. By combining a care-
fully chosen emitter layer with high-refractive-index substrates8,9,
and using a periodic outcoupling structure, we achieve a device
power efficiency of 90 lm W21 at 1,000 candelas per square metre.
This efficiency has the potential to be raised to 124 lm W21 if the
light outcoupling can be further improved. Besides approaching
internal quantum efficiency values of one, we have also focused on
reducing energetic and ohmic losses that occur during electron–
photon conversion. We anticipate that our results will be a starting
point for further research, leading to white OLEDs having efficien-
cies beyond 100 lm W21. This could make white-light OLEDs, with
their soft area light and high colour-rendering qualities, the light
sources of choice for the future.

To turn a white OLED into a power-efficient light source, three key
parameters must be addressed: the internal electroluminescence
quantum efficiency must be close to one (high internal quantum
efficiency), a high fraction of the internally created photons must
escape to the forward hemisphere (high outcoupling efficiency)
and the energy loss during electron–photon conversion should be
small (low operating voltage). The internal quantum efficiency and
the outcoupling efficiency are combined in the external quantum
efficiency (EQE).

The use of phosphors allows 100% internal quantum efficiency,
because both the singlet and triplet states (generated at a ratio of 1:3
owing to their multiplicity) are directed to the emitting triplet state10.
For power-efficient white OLEDs, an additional challenge is that high-
energy phosphors demand host materials with even higher triplet
energies to confine the excitation to the emitter11. Taking exciton
binding energy and singlet–triplet splitting into account, the use of
such host materials considerably increases the transport gap and there-
fore the operating voltage. For these reasons, blue fluorescent emitters
are widely used to complete the residual phosphor-based emission
spectrum2,12,13; this, however, either reduces the internal quantum effi-
ciency or requires blue emitters with special properties14. Whenever
OLEDs are built in a standard substrate emitting architecture, the out-
coupling efficiency is approximately 20%. The remaining 80% of the
photons are trapped in organic and substrate modes in equal

amounts15. Hence, the greatest potential for a substantial increase in
EQE and power efficiency is to enhance the light outcoupling.

Here we present an OLED structure that combines a novel concept
for energy-efficient photon generation with improved outcoupling.
The key feature of the OLED layer structure is the positioning of the
blue phosphor within the emission layer and its combination with a
carefully chosen host material: energetically, the triplet energy of the
blue emitter material is in resonance with its host so that the blue
phosphorescence is not accompanied by internal triplet energy
relaxation before emission. The exciton formation region is at the
interface of a double-emission-layer structure16. The blue host–guest
system is surrounded by red and green sublayers of the emission layer
to harvest unused excitons. For holes and electrons, the emission
layer is nearly barrier-free until they reach the region of exciton
formation, which keeps the operating voltage low. The outermost
layers in contact with the electrodes are chemically p- and n-doped,
which reduces ohmic losses to a negligible level16.

A close-up of the emission layer (Fig. 1a) shows the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO)—the energy levels at which charge transport occurs—and
the triplet energies of all materials. The latter essentially define the
exciton distribution within the multilayer emission layer and, conse-
quently, the emission spectrum and device efficiency. Holes and elec-
trons are injected without facing any energy barrier into the emission
layer from NPB to TCTA:Ir(MDQ)2(acac) and from TPBi to
TPBi:Ir(ppy)3, respectively. (See Methods Summary for materials
composition.) Here, holes are transported directly within the
HOMO level of the emitter owing to its high concentration
(10 wt%). Both carriers will accumulate at the double-emission-layer
interface, forming excitons nearby. The different sublayers are sepa-
rated by thin intrinsic interlayers of the corresponding host material to
decouple the sublayers from unwanted energy transfer. Here, 2 nm is
sufficient to suppress Förster-type transfer because the typical Förster
radii for Ir complexes17 are less than 2 nm. Excitons created in the blue
region on host or dopant have various decay channels.

The transfer rate kb-r to the red emitter is strongly reduced with the
introduction of the high-triplet-energy TCTA interlayer, restricting
diffusive exciton migration18. Owing to their resonant triplet energies
of 2.6 eV (see Fig. 2a), triplet excitons are free to move within the
TPBi:FIrpic layer, resulting in a back-energy transfer rate kBT accom-
panied by a delayed component in the decay of the emitting species19.
This system cannot maintain the intrinsically high quantum yield of
FIrpic, so the blue region is followed by an Ir(ppy)3-doped region,
retaining high efficiency by diffusively harvesting host excitons, repre-
sented by a rate of transfer from blue to green of kb-g. The interlayer
between blue and green ensures that solely diffusive energy exchange
contributes to kb-g, as Förster-type transfers are suppressed17.

We now discuss the exciton dynamics in this emission layer. First,
we present direct proof of the back-energy transfer kBT in a complete
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device. This is followed by photoluminescence quantum yield
measurements to confirm that excitons that cannot relax on FIrpic
are captured diffusively by the green phosphor Ir(ppy)3. Because kBT

is detected as a slow-relaxation component of the FIrpic emission,
itself being one of several decay channels within the present white
device structure (see Fig. 1a), we prepared an additional device B to
increase the FIrpic emission, and hence kBT, in the multicolour elec-
troluminescence spectrum.

Figure 2 plots its spectrum- and time-resolved emission. In Fig. 2a,
the emission is filtered using appropriate colour filters, starting with
solely red emission (1) and subsequently increasing the transmission
in the visible spectrum to the complete electroluminescence spec-
trum (5). The corresponding electroluminescence transients can be
seen in Fig. 2b. First, a monoexponential decay with a time constant
of 1.4 ms is observed for the red part of the spectrum (1). With
increasing transmission, a second, slower component can be
observed in the electroluminescence transient with a time constant
of 3.0 ms. The spectral dependence, being directly linked to the FIrpic
emission, indicates that this slow component can be exclusively
attributed to kBT from TPBi to FIrpic. The slow component is not
seen for the blue reference device in Fig. 2b, because it comprises a
TCTA:FIrpic emission layer, where excitons are confined to FIrpic19.

The photoluminescence quantum yield gPL is a very reliable measure
of the suitability of emitter materials because it determines the ratio
between the radiative decay channel (kr) and the sum of radiative
and non-radiative (knr) relaxation. In the present system, the rate of
excitons relaxing without photon emission on host sites, kH, needs to
be included, making gPL 5 kr/(kr 1 knr 1 kH). It is known that gPL

decreases for a phosphor-doped host–guest system whenever the
excitation is not efficiently confined to the emitting species, and in

most cases, this is accompanied by a back-energy transfer11,19.
Measurements of gPL are carried out to investigate the blue to green
transfer20 kb-g.

FIrpic is doped at 1.7 wt% either into TCTA (T1 5 2.8 eV, see
Fig. 2a) or TPBi, yielding very different values for gPL of 81% for
TCTA and 14% for TPBi, indicating that TPBi:FIrpic alone cannot be
used for an efficient OLED. TCTA, with a triplet energy about 0.2 eV
higher, can efficiently confine excitons to FIrpic, resulting in a very
high gPL (here, kH 5 0). By knowing the triplet decay time,
t 5 1/(kr 1 knr) 5 1.35 ms, for the TCTA system21, we can further
deduce from the TPBi:FIrpic data that kH 5 3.5 3 106 s21. The latter
is roughly six times larger than the radiative rate, kr 5 6.0 3 105 s21.
It is the essence of this emission-layer design that these excitons are
captured efficiently for green emission, that is, kH feeds kb-g because
the Ir(ppy)3-doped region is within the triplet diffusion length of
TPBi. The photoluminescence efficiency of TPBi:FIrpic increases to
32% when the FIrpic concentration is increased to 10 wt%. This
indicates that the low gPL of TPBi:FIrpic is not intrinsic, but instead
depends on the probability of an exciton finding a dopant site for
relaxation.

The use of high-refractive-index glass substrates can substantially
increase the amount of light coupled from the organic layers into the
glass substrate (up to 80%)8,9. In Fig. 1b, an OLED cross-section is
shown to illustrate the light propagation originating in the emission
layer. If we use a low-refractive-index substrate, light will face two
interfaces with a step in the refractive index n. First, light will partly
be reflected because of total internal reflection at the organic
(norg 5 1.7–1.9)/glass substrate(nlow 5 1.51) interface, forming organic
modes. Second, the light entering the glass substrate is facing the glass
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Figure 1 | Energy level diagram and light modes in an OLED. a, Lines
correspond to HOMO (solid) and LUMO (dashed) energies; filled boxes
refer to the triplet energies. The orange colour marks intrinsic regions of the
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exciton generation. b, The left panel shows a cross-section of an OLED to
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Figure 2 | Spectrum- and time-resolved electroluminescence transients.
a, Electroluminescence spectra of device B obtained through colour filters.
The spectra are numbered from solely red emission (1) to the complete
emission (5). The phosphorescence spectra (at 77 K) of TCTA and TPBi are
plotted. b, Electroluminescence decay curves of device B according to the
spectrum in a. Arrows indicate the time at which a slower component sets in.
From 1 to 5, this onset shifts to shorter times, nicely agreeing with a higher
contribution of FIrpic emission. Additionally plotted are decays for blue,
green and red reference devices.
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substrate/air (nair 5 1) interface, where total internal reflection traps it
to glass modes. Although organic modes remain inside the structure
and therefore cannot contribute to the total light output of the device,
glass modes can be coupled out by a modification of the substrate shape
(see Fig. 1b). Increasing the refractive index of the glass substrate from
nlow 5 1.51 to nhigh 5 1.78 causes the index mismatch between organic
materials and substrate to vanish, enhancing light coupling into the
high-refractive-index glass, so that all photons guided to organic modes
by total internal reflection at the organic/glass interface in the low-
refractive-index case are entering the glass substrate.

Current density and luminance are plotted versus operating volt-
age for all devices in Fig. 3a, with the corresponding electrolumines-
cence spectra displayed in Fig. 3b. For both substrate types, the
OLEDs achieve a brightness of 1,000 cd m22 slightly above 3 V;
10,000 cd m22 are reached below 4 V. Devices LI and HI-1 exhibit
an excellent colour-rendering index of 80, similar to the best values
reported for white OLEDs2,4,12,14. The Commission Internationale
d’Eclairage (CIE) coordinates of these devices are (0.44, 0.46) and
(0.45, 0.47) for devices LI and HI-1, respectively. Because charges
reach the emission layer almost without energetic barriers, the elec-
troluminescence spectra of these devices do not depend on the
brightness between 100 and 5,000 cd m22, which is a great improve-
ment on many values from the literature (Supplementary
Information)2,14,22. Figure 4 shows the power efficiencies of devices
LI and HI-1, which differ only in the use of the substrate. Unless
otherwise specified, all efficiency data throughout the text refer to a
luminance in forward direction of 1,000 cd m22.

We obtained comparable power efficiencies of 30 and 33 lm W21

without outcoupling enhancement, respectively, which corresponds
to 13.1% EQE for device LI and 14.4% EQE for device HI-1. With the application of an index-matched glass half-sphere, device LI reaches

55 lm W21 (24% EQE), which corresponds to an increase in EQE of a
factor of 1.8. This relationship drastically changes for device HI-1.
Here the EQE is increased by a factor of 2.4 to 34% EQE, correspond-
ing to 81 lm W21. One promising approach to enhance light out-
coupling even for large-area devices is the use of shaped substrates,
which enables the coupling of light under high angles of incidence (to
the substrate surface normal). We prepared a pattern of pyramids9

(with period 0.5 mm) by cutting 90u grooves into a high index glass
(Supplementary Information), similar to microlens arrays23,24, to cou-
ple out more light. With the application of this patterned surface,
device HI-1 achieves 26% EQE and 63 lm W21, already exceeding
the values of device LI (with half-sphere). This result illustrates the
great potential of high-refractive-index substrates.

The efficiency of organic LEDs can be increased further by placing
the emission layer further away from the reflective cathode to avoid
plasmonic losses to the metal9,25. Plasmonic losses, where the emit-
ting dipoles couple to surface plasmons of the reflective metal, are the
dominating loss channel when the emission takes place in the proxi-
mity of the metal. Their impact steadily decreases with greater dis-
tances between the emission layer and the cathode, and drops to a
negligible level for distances greater than 200 nm (ref. 25). The light
extraction to air is strongly influenced by the micro-cavity formed
between glass and cathode, so we observe a periodical dependence of
the emitted light as a function of distance between the emission layer
and the cathode with maxima at distances corresponding to con-
structive interference of the emission wavelength. Additionally, if
the emission layer is placed in the second antinode of the reflective
metal cathode, OLEDs exhibit a more direct emission, which makes
the light outcoupling of substrate modes easier (Supplementary
Information)25.

We prepared devices HI-2 and HI-3 with 205-nm-thick and 210-
nm-thick electron transport layers, respectively, to best-fit the second
outcoupling maximum. Their electroluminescence spectra are
shown in Fig. 3b. Unlike devices LI and HI-1, we observed strong
spectral changes. Here, emission from both the blue (FIrpic) and red
(Ir(MDQ)2(acac)) regions of the emitted spectrum was decreased,
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negatively affecting both the colour rendering index (which decreases
to ,70) and CIE coordinates (which shift into the yellow region
(0.41–0.43, 0.49)). These changes can clearly be attributed to the
different position of the second emission maximum for all three basic
emitters, with a difference of roughly 60 nm for FIrpic and
Ir(MDQ)2(acac) (Supplementary Information). This displacement
from the Planck curve towards the yellow spectral range is not a large
problem, and can be solved by using a deep blue phosphorescent
emitter, which was not yet available to us.

The power efficiency of devices HI-2 and HI-3 can be seen in Fig. 4.
Taking all substrate modes into account, these devices yield striking
values of 124 and 111 lm W21, respectively. This corresponds to EQE
values of 46% (HI-2) and 44% (HI-3), approaching efficiencies at
which every second photon created is coupled into the forward hemi-
sphere. Applying the pyramidal area structure to these devices, we
obtain 90 lm W21 (34% EQE) and 87 lm W21 (34% EQE) for HI-2
and HI-3, respectively. These values are higher than the average
power efficiency of fluorescent tubes in a fixture (60–70 lm W21).
Furthermore, the novel emitter design is also characterized by an
extremely small roll-off at high brightness (Supplementary
Information): although it is common to state white OLED efficiency
at 1,000 cd m22, higher brightness (2,000–5,000 cd m22) could sig-
nificantly reduce the size and cost of OLED lighting. Such high
brightness is usually challenging owing to the pronounced roll-off
in efficiency, in particular for phosphorescent emitters26, but at
5,000 cd m22, we obtain still very high power efficiencies of
74 lm W21 (HI-2) and 73 lm W21 (HI-3).

Our results show that white OLEDs with efficiencies approaching
100 lm W21 even at high brightness are possible. For a broad applica-
tion in general lighting, the lifetime issue of the blue emitters
(Supplementary Information) has to be solved and the cost has to
be significantly reduced, using low-cost electrode materials, thin-film
encapsulation, roll-to-roll manufacturing and so on. With its poten-
tial to outperform fluorescent tubes, we think the future of white
organic LEDs will be bright, not only because of their high illumina-
tion quality but also because their outstanding efficiencies will help to
reduce our carbon footprint.

METHODS SUMMARY

All glass substrates were coated and structured with indium tin oxide (sheet

resistance 25V per square), and cleaned in an ultrasonic bath with acetone,

ethanol and iso-propanol. All devices were fabricated by thermal evaporation

in a single-chamber tool under high-vacuum conditions (base pressure

,1028 mbar). Silver top contacts were thermally evaporated without breaking

the vacuum. The devices were encapsulated with an additional glass and epoxy

resin in a nitrogen atmosphere before evaluation. The device area is 6.7 mm2.

The main materials used have acronyms as follows. MeO-TPD: N,N,N9,N9-

tetrakis(4-methoxyphenyl)-benzidine. NPB: N,N9-di(naphthalen-1-yl)-N,N9)-

diphenyl-benzidine. TPBi: 2,29,299(1,3,5-benzenetriyl) tris-(1-phenyl-1H-

benzimidazole). TCTA: 4,49,499-tris(N-carbazolyl)-triphenylamine. Bphen: 4,7-

diphenyl-1,10-phenanthroline. FIrpic: iridium-bis-(4,6,-difluorophenyl-pyridinato-
N,C2)-picolinate. [Ir(ppy)3]: fac-tris(2-phenylpyridine) iridium. Ir(MDQ)2

(acac): iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate).

The layer sequence for the white OLED on top of a low-index substrate (device

LI) is as follows: 60 nm MeO-TPD doped with 4 mol.% NDP-2 as a hole-transport

layer/10 nm NPB as the electron-blocker layer/emission layer/10 nm TPBi as a

hole-blocking layer/40 nm Cs-doped Bphen as an electron-transport layer/

100 nm Ag cathode. Alternatively, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino-

dimethane can be used as freely available p-dopant (Supplementary

Information). The emission layer (detailed composition is shown in Fig. 1) con-

sists of a hole-transporting layer (TCTA) and an electron-transporting host

material (TPBi) partially doped with the following phosphorescent emitters:

FIrpic for blue, [Ir(ppy)3] for green and Ir(MDQ)2(acac) for orange.

Using a high-index glass substrate (devices HI-1, HI-2 and HI-3), the trans-

port layers are adjusted to a hole-transport layer of 45 nm to optimize the light

outcoupling. The thicknesses for the electron-transport layers are 40 nm (HI-1),

205 nm (HI-2) and 210 nm (HI-3), respectively. Unlike the standard emission

layer, the thickness of the TPBi:FIrpic sublayer is increased from 4 to 8 nm in

device B to enhance the FIrpic emission. Device efficiencies were measured in a

calibrated integrating sphere. HOMO values are obtained from ultraviolet

photoelectron spectroscopy; LUMO values are estimated from the optical gap

of the material16,27,28.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Reference devices. The electroluminescent decay curves of Fig. 2b correspond to

the following reference samples prepared on top of standard glass coated with

indium tin oxide. FIrpic consists of: 60 nm MeO-TPD:NDP-2/10 nm NPB/20 nm

TCTA:FIrpic 20 wt% (ref. 21)/10 nm TPBi/50 nm Bphen:Cs/100 nm Al. Ir(ppy)3

consists of: 60 nm MeO-TPD:NDP-2/10 nm NPB/20 nm TCTA:Ir(ppy)3 8 wt%

(ref. 18)/10 nm TPBi/50 nm Bphen:Cs/100 nm Al. Ir(MDQ)2(acac) consists of:

60 nm MeO-TPD:NDP-2/10 nm NPB/20 nm NPB:Ir(MDQ)2(acac) 10 wt% (ref.

27)/10 nm TPBi/50 nm Bphen:Cs/100 nm Al.

Device evaluation. Electroluminescence spectra were recorded with a calibrated
spectrometer CAS 140 CT (Instrument Systems Optische Messtechnik). Only

the electroluminescence spectra as shown in Fig. 2 were recorded with a USB2000

minispectrometer (OceanOptics). All efficiency measurements were carried out

in an integrating sphere (Instrument Systems Optische Messtechnik) attached to

the calibrated spectrometer CAS 140 CT and a source-measure unit 2400

(Keithley Instruments). The relative efficiencies as a function of luminance were

measured with a fast, calibrated photodetector in the forward direction, which

were then rescaled to the values obtained with the integrating sphere. This is valid

because the electroluminescence spectra do not change significantly in the dis-

played range of brightness. All efficiencies are given, if not stated otherwise, at a

luminance of 1,000 cd m22 and measured in the forward direction, that is, at a

normal angle of incidence for the complete device configuration, eventually

including outcoupling structures. The glass half-spheres have diameters of 18

and 15 mm for low and high refractive index, respectively. Index-matching oils

of n 5 1.5 and n 5 1.78 were obtained from Olympus Corporation and Cargille

Laboratories, respectively. Substrate edges were covered to exclude edge emis-

sion contributing to the measurement. Photoluminescence quantum yield mea-

surements were carried out in an integrating sphere (Labsphere) using a 325 nm

HeCd laser (Kimmon Electric Company) as excitation source and the USB2000

minispectrometer as detector. The set-up was calibrated using a ultraviolet/

visible light source, itself calibrated with the CAS 140 CT spectrometer.

Spectroscopy. The phosphorescence spectra of TCTA and TPBi in Fig. 2a were
measured at 77 K using a gated phosphorescence set-up with a 337 nm pulsed

laser (MSG-SD from Lasertechnik Berlin) as excitation source. Here, the delay

generator (DG 535, Stanford Research Systems), triggered with the laser pulse,

gave the delay for the detection (LS 50 B spectrometer, Perkin Elmer), to separate

fast and slow phosphorescence. The time and spectrally resolved measurements

were carried out under electroluminescence operation. The general set-up is

realized as shown previously29. Using different colour filters, the transmission

of the white OLED spectrum was changed. The transmitted intensity was then

linked to the fast photodiode with a glass fibre to detect the time decay.

29. Reineke, S. et al. Measuring carrier mobility in conventional multilayer organic
light emitting devices by delayed exciton generation. Phys. Status Solidi B 245,
804–809 (2008).
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