Transport Energy Infrastructure
Roadmap to 2050

MAIN REPORT

Prepared for the LowCVP by Element Energy Ltd
Celine Cluzel & Alastair Hope–Morley

JUNE 2015
Transport Energy Infrastructure
Roadmap to 2050

MAIN REPORT
JUNE 2015

LowCVP Project Manager
Jonathan Murray,
Policy and Operations Director

Contractor
Prepared by Element Energy Ltd

Authors
Celine Cluzel
Alastair Hope-Morley

Project Steering Group
Autogas Limited
BOC Limited
BEAMA
Calor Gas Ltd
EDF Energy
 Electricity Networks Association
National Grid
Office for Low Emission Vehicles
Renewable Energy Association
Transport for London
Transport Scotland
UK Petroleum Association

Disclaimer
While the authors consider that the data and opinions contained in this report are sound, all parties must rely upon their own skill and judgement when using it. The authors do not make any representation or warranty, expressed or implied, as to the accuracy or completeness of the report.
Contents

Background and objectives

Approach

Transport Infrastructure Roadmaps

Conclusions
Background - a ‘Transport Infrastructure roadmap’ is needed to complement existing vehicle and fuel roadmaps

- In the context of the expected transition to lower carbon powertrains and fuels, the Auto Council vehicle roadmaps have proven to be a useful tool to focus research, funding and policy, bringing into one place the industry’s views on future technology options, deployment steps and corresponding policy drivers.

- To complement these powertrain technologies roadmaps, the LowCVP commissioned a Road Transport Fuels Roadmap in 2013-14, which also proved successful in bringing clarity to the fuel options available and mapping the enabling milestones.

- This Infrastructure roadmap is the ‘missing piece’ that will support new powertrains and new fuels. This roadmap is all the more necessary as the needs and barriers for deployment of electric, hydrogen and gas refuelling stations differ significantly and refuelling/recharging infrastructure is a key enabler for low emission vehicles.

- The objectives of the Infrastructure Roadmap are to:
 - **Assess the infrastructure needs** and barriers for deployment of electric, hydrogen and gas refuelling stations to 2050, including impact on upstream distribution, as well as to consider ‘conventional’ liquid fuels
 - **Make recommendations for delivery** of infrastructure deployment, both at national and local government level.

Source: Element Energy
Fuels / energy vectors considered

- **Zero tailpipe emission fuels:** *electricity and hydrogen*
- **‘Conventional’ liquid fuels:** gasoline (E5 to E20, in line with the Transport Fuels Roadmap), diesel, LPG/bio-propane
- **Methane:** Compressed Natural Gas (CNG), Liquefied NG (LNG) and biomethane
- **Niche/future fuels:** methanol, liquid air and a high bioethanol blend (E85)

Refuelling infrastructure types

- Depot based refuelling for fleet operators and return to base operators
- Home recharging for private and (some) commercial vehicles
- Public forecourt refuelling/recharging

Drivers for change in the transport energy system

- The UK’s legally binding target to **reduce total GHG emissions by at least 80% (relative to 1990 levels) by 2050**, and transport contributes to c. 25% of UK total GHG emissions;
- EU level regulations (*gCO₂/km*, **Air Quality targets** and EURO spec), Directives (Renewable Energy, Fuel Quality, Clean Power for Transport) and Transport White Paper

Source: Element Energy
Contents

Background and objectives

Approach

Transport Infrastructure Roadmaps

Conclusions
The development of the Infrastructure Roadmap benefitted from input from a wide range of stakeholders, many consulted through workshops.

ICE vehicles: diesel, petrol, LPG, gas vehicles
Electric vehicles: Battery (BEV), Plug-in Hybrid (PHEV), Range-Extended (RE-EV) and hydrogen fuel cell (FCEV)
Niche/future fuels considered: E85, methanol, liquid air

Scrapage rate, stock and mileage inputs based on DfT data/projections: c. 40% increase in stock and vkt by 2050 (39 million vehicles, 740 billion vkt); Vehicle efficiency based on Committee on Climate Change modelling.

Industry consultation with LowCVP Fuels working group

- **Develop** uptake scenarios for % sales of electric and ICE vehicles
- **Input** into Element Energy fleet model
- **Output** numbers of vehicles in the fleet and MJ used per energy vector
- **Prepare** Infrastructure Roadmap
- **Host** stakeholder workshops
- **Prepare** draft report
- **Complete** final report

- **Review** existing literature on refuelling and upstream infrastructure

- **Four dedicated fuel workshops were conducted**
 - Workshop themes: electricity, liquid fuels, methane, hydrogen
 - **38 attendees included**: Infrastructure manufacturers, installers, operators, DNOs, energy companies, fuel suppliers, OEM / vehicle suppliers, end users, local government / regulator

See full reports for further details of fuel uptake scenarios.

Report preparation

External input

Source: Element Energy
vkt: vehicle km travelled
The future fuel demand and associated infrastructure needs are based on ambitious vehicle uptake scenarios in line with the UK GHG reduction targets.

Proposed policy-led uptake scenarios – focus on alternative fuels

- The scenarios are not intended to cover all possible outcomes but instead focus on cases with ambitious uptake of alternative fuels in line with targets set by the Carbon Plan.
- They represent possible futures where low and ultra low emission powertrains are successfully deployed, and are illustrative rather than based on detailed modelling of technology costs and customer decision making behaviour.
- In accordance with the LowCVP Fuels Roadmap, blends higher than B7 are not considered for the mainstream fuels and E20 is considered only from the 2030s.

New car/van EV sale scenarios:

<table>
<thead>
<tr>
<th>Year</th>
<th>BEV</th>
<th>PH/RE EV</th>
<th>FCEV</th>
<th>Moderate ambition</th>
<th>CCC targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>3%</td>
</tr>
<tr>
<td>2020</td>
<td>30%</td>
<td>9%</td>
<td>60%</td>
<td>100%</td>
<td>9%</td>
</tr>
<tr>
<td>2030</td>
<td>30%</td>
<td>9%</td>
<td>60%</td>
<td>100%</td>
<td>9%</td>
</tr>
<tr>
<td>2050</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>3%</td>
</tr>
</tbody>
</table>

New bus sales scenario:

<table>
<thead>
<tr>
<th>Year</th>
<th>FCEV</th>
<th>(Bio)methane</th>
<th>BEV</th>
<th>Diesel, includes hybrid</th>
<th>2020/2030/2040/2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>92%</td>
<td>80%</td>
<td>60%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2030</td>
<td>10%</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>2040</td>
<td>10%</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>2050</td>
<td>10%</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>50%</td>
</tr>
</tbody>
</table>

New truck sales scenario:

<table>
<thead>
<tr>
<th>Year</th>
<th>FCEV</th>
<th>Diesel, includes hybrid</th>
<th>BEV</th>
<th>Diesel dual fuel (LPG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>94%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>2030</td>
<td>79%</td>
<td>5%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>2040</td>
<td>45%</td>
<td>10%</td>
<td>1%</td>
<td>25%</td>
</tr>
<tr>
<td>2050</td>
<td>20%</td>
<td>20%</td>
<td>1%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Source: Element Energy in consultation with LowCVP Fuels Working Group. Refer to the full reports (issued separately) for more detail. ‘Diesel’ refers to a blend of B7 and drop-in renewable diesel, as per the Fuel Roadmap.
Four different roadmaps have been developed to best capture the diverse challenges of each type of energy vector

- The roadmaps and associated recommendations are presented next for each energy vector:

 Sections for each fuel are indicated by a specific tag:

- A structured approach was adopted to assess the **background and status quo for each fuel** identifying current supply pathways and trends, geographic distribution and key stakeholders.
- This enabled **identification of future infrastructure requirements and barriers to deployment** supported by quantification of projected fuel demand and stations numbers.
- The focus of the roadmap is on the barriers to infrastructure rollout, the wider barriers to adoption of alternative fuelled vehicles (such as cost premium, supply etc.) are not investigated here.
- The **cost estimates also focus on the refuelling/recharging infrastructure** (capital costs) and exclude costs such as new fuel production units, potential vehicle subsidies and costs to set up new distribution systems.
- This report contains only the key findings, the extensive analysis supporting them is issued separately, in four distinct reports (electricity, methane, liquid fuels, hydrogen).
Contents

Background and objectives

Approach

Transport Infrastructure Roadmaps

Conclusions
The existing electricity network, exploited with smart technologies, is well suited to support the electrification of transport

- Electricity transmission and distribution systems already in place, for other purposes than transport, and electricity is in process of being decarbonised (-80% and -50% gCO₂/kWh by 2035 compared to 2013 in ‘No progression’ and ‘Slow progression’ projections from National Grid)

- Additional transport demand will present a peak demand (GW) challenge rather than a production (TWh) challenge: without charging management, EVs could add 28 GW of demand (c.+50% of current peak demand). However, EVs are only one contributor to the future peak demand, among other technologies earmarked as part of the UK decarbonisation plan (notably heat pumps)

- The main demand for electricity will be from cars, which require both residential charge points and a national public network

The national electricity grid provides an existing distribution pathway for supplying power to electric vehicles across the UK

<table>
<thead>
<tr>
<th>Upstream</th>
<th>Midstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas, coal, oil</td>
<td>Distribution network</td>
<td>Annual UK total electricity consumption</td>
</tr>
<tr>
<td>Fossil fuel consuming installed capacity: 63.8 GW (75% total)</td>
<td>Transmission network</td>
<td>Industrial, Domestic, Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>317 TWh (2013)</td>
</tr>
</tbody>
</table>

Electricity demand

TWh/year

- Total UK demand: 317
- Transport demand: 51

- The quoted diversified peak power is based on currently observed diversity factors (for which data is limited) and assumes to no demand management is in place, i.e. this is an upper bound peak power requirement - based on scenarios presented p. 9
Millions of charge points (mostly residential) will be needed to support widespread EV deployment, with uncertainty over charging technologies.

Infrastructure roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Total sites</th>
<th>Cost (£m)</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Many sites but variable offer</td>
<td>£20-40m</td>
<td>Rollout of primarily conductive rapid (40+ kW) charging points in short term</td>
</tr>
<tr>
<td>2020</td>
<td>c. 500</td>
<td>£130-230m</td>
<td>Future type and rates will depend on technology developments</td>
</tr>
<tr>
<td>2025</td>
<td>c. 1,100</td>
<td>£300-530m</td>
<td>Solutions to provide certainty of access to homes w/o off-street parking</td>
</tr>
<tr>
<td>2030</td>
<td>c. 2,200</td>
<td></td>
<td>4-7 million</td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td>10-15 million</td>
</tr>
</tbody>
</table>

- **Residential**
 - 3-7 kW off-street or shared on-street
 - 3/7/22 kW
 - >40 kW CP (plug and wireless) installed with concurrent trials of alternative power delivery systems
 - Potential rollout of alternative power delivery systems e.g. dynamic charging on highways, battery swap or overhead cables

- **Depot / workplaces**
 - Cars/vans
 - Buses and HGVs

Legend
- **Cost**
- **Total CPs**
- **Technical**

Plug-in electric vehicles stock

<table>
<thead>
<tr>
<th>Year</th>
<th>Thousand vehicles</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>1,500-2,500</td>
<td>4,000-8,000</td>
<td>20,000-25,000</td>
</tr>
<tr>
<td>Cars</td>
<td></td>
<td>60</td>
<td>250-400</td>
<td>700-1,300</td>
<td>3,400-4,000</td>
</tr>
<tr>
<td>Vans</td>
<td></td>
<td><5</td>
<td>10</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>HDVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projections are based on policy-led uptake scenarios presented on page 9.

Data supported quantification of infrastructure requirements.

Legend:
- Dashed lines represent high uncertainty

Major milestone/enabler

- *To handle decarbonisation of the grid and uptake of EVs, heat pumps and distributed generation such as PV panels*
A visible, accessible and reliable public charging network should be rolled out for light vehicles

End user experience of public charge points

- Current public infrastructure is fragmented with several operators offering various access conditions and variable reported reliability
- Beyond the number of charge points, a network should meet some criteria to be useful to EV drivers:
 - Well marketed to drivers (e.g. clear signs, uniform signage across the country)
 - Easy to operate (e.g. multi socket connections, simple payment system, etc.)
 - Immediately accessible (e.g. PAYG, dynamic booking systems, live status information)

Recommendations

R&D / industry / LAs: Improve and build on existing network and develop a national platform compatible with multiple vehicle types to remotely communicate with public infrastructure (e.g. dynamic booking, simple payment systems, availability notification) and consider joining cross platform projects (e.g. EMi³); embed criteria in relevant funding programs

Economics of public charge points

- The business case for public charge points remains challenging

Recommendations

Central gov.: Continue funding program and monitor progress, embed end user experience criteria in support programs

Local Authorities: support programs where local fleets can provide a base load to charge points that can also be accessible to the general public; facilitate exchange between relevant stakeholders (DNOs, end user, charge point operators) to help optimum siting; share best practise findings with other LAs

On-going trial programs: Share key learnings relevant to business case and end user experience (e.g. current Rapid Charging Network project)

Industry: DNOs could communicate areas of adequate network capacity to infrastructure developers to avoid high connection costs

Source: Element Energy
Solutions to facilitate overnight charging will be required across residential areas and depots

Residential areas
- Purchasing an EV requires certainty of access to charging, which is best provided by access to overnight home charging
- Ambitious uptake scenarios and unbalanced access to off street parking in urban/rural areas mean many households will need new solution for access to ‘home charging’

Recommendations

Local Authorities: Continue (or begin) to investigate solutions to infrastructure for home owners without off-street parking and share findings; implement a tenants’ right to install infrastructure for rented properties; support car club installation of charge points in dedicated bays; implement rules for new builds and retrofit to be ‘socket ready’ (successfully done in Westminster City Council)

R&D bodies & industry: develop identification systems for residential infrastructure shared between multiple users

Central Government: Continue to monitor private sector investment trends for residential and depot based infrastructure and adjust support as needed

Depots / workplaces and fleets
- Fleet operators of HDVs are likely to be faced with high local network reinforcement costs (already observed) – an investment in assets not own by the fleet operator: an unfamiliar risk and procedure

Recommendations

Local gov. facilitate the interface between DNOs and fleet operators and prediction of ‘demand cluster’ for optimised investment; socialise early adopter case studies to share lessons learnt

Central gov. and regulator: align EV uptake ambition with network reinforcement needs to allow/encourage ‘top-down’ strategy (upfront investment in advance of need)

R&D bodies: support trial of new technologies (e.g. inductive, ultra fast conductive, ‘automatic plug-in’ etc.) that would be more practical for fleets than current technologies

Source: Element Energy
Mitigating the impact of electric vehicles on the network will require new technologies and new commercial arrangements

Impact on electricity network

- Without management of the charging time, EVs could (when added to other technologies such as heat pumps) require large investment in new distribution infrastructure (substations, cables) and possibly new generation / interconnection capacity. The Smart Grid Forum identified that ‘smart’ technical and commercial solutions could save in the order of £15bn on distribution network reinforcement costs by 2050.
- DNOs will need information on EV location and uptake to plan investment and smart solutions rollout accurately.
- Research is needed to understand relative impact of 3kW vs 7kW charge point deployments.
- Although less studied benefits to the grid could also be available: as flexible loads, recharging EVs could provide important grid balancing services to maintain grid frequency, to manage supply and reduce renewable curtailment.

Recommendations

Central Gov. & regulators: support DNOs to access geographically disaggregated EV uptake data;

Installers and DNOs: improve platform for compiling charge point installation notifications (as stipulated by IEC);

Regulators, electricity suppliers and DNOs: develop new commercial arrangements and tariffs required for the uptake of smart charging solutions and for customer engagement [Ofgem’s Low Carbon Fund already supports these activities];

On-going trial programs: disseminate findings on local network management solutions to DNOs and related stakeholders;

R&D bodies & DNOs: Investigate network related topics: charging/demand management technologies, Vehicle-2-Grid, impact on battery life, co-locating energy storage devices with rapid charge points to alleviate strain on weak grid.

Refer to the full report for more detail on smart solutions.

Many opportunities exist for Heavy Duty Vehicles to use natural gas supported by mature refuelling technologies

- The UK benefits from an extensive and advanced (unique high pressure network) gas grid, although not fully exploited for transport applications yet.
- Even if the current network in the UK is limited (<50 stations), internationally 1000s of gas stations are active indicating technology maturity.
- The projected added demand from transport is negligible compared with the current gas demand. However, further distribution infrastructure might be required for Liquefied Natural Gas (terminals).
- The main demand for gas will be from heavy duty vehicles, which require both bunkered refuelling (at depots) and public refuelling for the case of long haul applications.

The UK natural gas demand:

- **2013:**
 - Total UK demand: 64,001 ktpa (850 TWh/year)
 - HGVs: 3,770 ktpa (50 TWh/year)
 - Buses: -

- **2050:**
 - Total UK demand: 64,001 ktpa (850 TWh/year)
 - HGVs: 3,770 ktpa (50 TWh/year)
 - Buses: -

Future gas demand from transport is negligible compared to current gas demand.
Regulatory barriers will be the primary focus for enabling natural gas infrastructure, whilst a number of technical issues must also be resolved.

Infrastructure roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Total stations</th>
<th>Total cost</th>
<th>CNG</th>
<th>LNG</th>
<th>Location</th>
<th>Access</th>
<th>Station capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td><50</td>
<td>c.£68m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>c.£130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td>c.£340m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td>c.£1bn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Financial support mainly towards fleet operators
- Prioritise higher pressure grid connection (2-70 bar, Local Transmission System and Intermediate Pressure) where possible. L-CNG station deployment where LNG logistics are more accessible than grid connection.
- Optimise logistics for delivery of LNG to stations, improving overall WTW emissions.
- Strategic deployment of new LNG import terminals to minimise delivery distance to LNG refuelling stations.
- Commercial deployment along key trucking routes.
- Wider national network expansion expected to be fully commercial.
- Targeted support for lower throughput regions.
- Continued development of cooperative semi-public infrastructure shared between fleets.
- greater fleet uptake provides sufficient investment confidence for large public stations deployment.
- EU Directive guidance met: CNG and LNG stations on TEN-T Core Network, <150km and <400km inter-station distance respectively.
- Communicate real-time station availability and fuel price data to end users.

Natural gas vehicle stock

<table>
<thead>
<tr>
<th>Year</th>
<th>Thousand vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>HGVs <18t: 4.0, HGVs >18t: 4.0, Buses: 2.0</td>
</tr>
<tr>
<td>2025</td>
<td>13, 12, 5.1</td>
</tr>
<tr>
<td>2030</td>
<td>26, 24, 9.7</td>
</tr>
<tr>
<td>2050</td>
<td>105, 85, 17</td>
</tr>
</tbody>
</table>

- Projections are based on policy-led uptake scenarios presented on page 9.
- Data supported quantification of infrastructure requirements.
- Dashed lines represent high uncertainty.
- Indicative fuel economy: dual fuel HGV = 60 kg/day, dedicated HGV = 75 kg/day.
- Costs based industry input, future cost reductions not included.
Planning guidance for Local Authorities will help speed up station deployments with key outstanding safety issues addressed

1. Planning guidance
 - A number of well informed, robust standards have been developed to address technical issues associated the installation of natural gas refuelling stations
 - Infrastructure operators have identified inconsistent interpretation of these standards by Local Authorities to significantly delay station installation

Recommendations
Central Government: develop planning guidance document to facilitate the uniform implementation of infrastructure equipment standards

2. Safety issues
 - Health and safety regulations and codes of practice only partially address infrastructure requirements
 - For example, natural gas infrastructure operators have identified on-site storage allowances and safety distances to be incompatible with refuelling station deployment due to regulator unfamiliarity with the use of natural gas as a road fuel

Recommendations
Regulators: Re-evaluate and consider amendment of existing standards for on-site natural gas storage allowances and safety distances

Cross cutting recommendation: Central Gov., LAs and regulators: Establish regular dialogue with the NGV Network, to address planning, safety and other technical issues as well as get industry input on funding/infrastructure strategies

NGV Network = Natural Gas Vehicle Network, a platform of gas grid operators, gas and LNG suppliers, CNG/LNG station providers, gas vehicle OEMs and other related stakeholders
End user experience should be harmonised across UK network through standardisation of equipment and improved communication systems

Station economics and support

- Industry asserted that economics for operating infrastructure in high throughput areas does not need support, as evidenced by commercial organisations offering turn-key solutions
- A minority of UK infrastructure projects have received grant funding; further support should target areas of lower vehicle throughput/lower base demand
- Areas for optimisation include costs for high pressure grid connection and venting prevention technologies

Recommendations

Central Government: Focus on long term support for natural gas vehicle deployment and the associated infrastructure will follow growing demand if the correct regulatory and legislative arrangements are in place

Gas network operators: allow competition in LTS connection to reduce connection costs

R&D bodies: Reduce costs for venting prevention / methane capture technologies

End user experience

- Inconsistent infrastructure implementation has led to a fragmented driver experience at stations
- Vehicle tank receptacles are compatible with different nozzles types and dispensing pressures but no standard stipulates a specific requirement
- Station downtime (e.g. for maintenance) is often not communicated to drivers and fuel price variations can significantly impact fleet operations

Recommendations

Central Gov. & regulators: Work with industry to develop the most appropriate nozzle/pressure standard to meet UK fleet operator needs for CNG, LNG and L-CNG stations

Industry: Develop communication system to notify drivers of technical/economic factors for infrastructure (e.g. station type, fuel price and maintenance schedules)

1 - e.g. TEN-T funded projects and OLEV £4m fund for future station deployments

LTS: Local Transmission System (high pressure gas grid)
Innovative approaches such as semi-private stations provide a transition strategy before wider vehicle and station deployment in the 2020s-2030s.

Depot infrastructure sharing

- A number of fleet operators have deployed semi-private refuelling facilities under cooperative contractual arrangements allowing pre-agreed operators to share each others facilities.

- Advantages of this approach include maximising station throughput and reducing dependency on public infrastructure rollout.

- Opportunities for further adoption of cooperative station ownership models will enable a transition to significant vehicle uptake when sufficient investor confidence exists for larger public infrastructure deployment.

Recommendations

Central Government: consider counting semi-private stations (where facility is shared between multiple, pre-agreed users) as ‘public’ in the Implementation plan to be submitted to the EC as part of Directive 2014/94/EU.

Industry: develop commercial arrangements that facilitate further adoption of the cooperative model.

1 Clean Power for Transport program – Directive on ‘the deployment of alternative fuels infrastructure’ (October 2014)
While further research is needed, measures that minimise the GHG emissions related to distribution and dispensing of gas should be adopted.

Well-to-Tank (WTT) emissions

- In keeping with national targets for reducing transport GHG emissions, emissions relating to logistics and dispensing of gas should be minimised.
- Current analysis is incomplete and UK non-specific, however some emission factors are well understood:
 - CNG station siting activities should aim to access high pressure grid connection points
 - LNG / L-CNG station siting activities should aim to optimise delivery logistics and adopt state-of-the-art venting prevention and capture systems
- Biomethane achieves greater WTT emission savings than natural gas but UK production is limited and incentives in place divert it to applications other than transport

Recommendations

Local Authorities: Consider WTT emission factors in conjunction with planning guidance when approving natural gas station installations

Central Government: Future infrastructure strategy should consider UK specific findings (on-going ETI led analysis)

R&D bodies: Reduce costs for venting prevention / methane capture technologies

UK biomethane production potential

Graph units: ktpa (TWh shown as reference)

National Grid upper and lower bound scenarios for biomethane production

- No Progression
- Gone Green

Source: Element Energy
The widespread use of hydrogen for mobility will require substantial growth in existing production and distribution infrastructure

- Production of hydrogen is currently limited to meet mostly an industrial demand and often used on-site, with limited distribution by road in gaseous and liquid forms.
- Strong growth in demand for mobility, driven by uptake of hydrogen vehicles such as passenger cars, commercial vehicles, buses and fork lift trucks, will need to be met by new production.
- A successful rollout in all vehicle types (i.e. reaching millions of vehicles after 2030) will require a quadrupling of existing production capacity, met by conventional and green sources.
- While the relative growth of hydrogen in each vehicle type remains uncertain, it is clear that a national refuelling network will be required to support passenger cars and private customers.

Until now, the UK hydrogen industry has been overwhelmingly geared towards meeting demand in refinery and industrial processes.

Current total UK hydrogen production capacity and future transport demand (kt/year):
- **2015**: 690
- **2050**: 2,300 (+233%)

Source: Element Energy
The H₂ infrastructure roadmap reflects the diverse refuelling needs of different vehicle types and the uncertainty about the speed of the rollout.

Infrastructure roadmap

Public access
- HRS #'s

Legend
- Cost
- Pressure
- Stations
- Technical

Van/small truck depots
- HDV depots: 350 bar
- Indoor forklifts: 350 bar
- H₂ supply and logistics
 - Production capacity
 - Transport demand

H₂ infrastructure developments
- **2015**
 - First 65 ‘small’ HRS
 - HRS: hydrogen refuelling station
 - Cost: c.£40m

- **2020**
 - Next c. 250 ‘medium’ and ‘large’ HRS
 - Pressure: 700 bar SAE-compliant fuelling for cars. HRS investors encouraged to make 350 bar H₂ available to support other vehicle types where needed
 - Cost: c.£180m

- **2025**
 - Next c. 700 ‘medium’ and ‘large’ HRS
 - Pressure: 700 bar SAE-compliant fuelling for cars. HRS investors encouraged to make 350 bar H₂ available to support other vehicle types where needed
 - Cost: £400-700m

- **2030**
 - Continued growth based on demand
 - Cost: c.£6,800bn

Hydrogen vehicle stock

<table>
<thead>
<tr>
<th>Thousand vehicles</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td>2</td>
<td>180-350</td>
<td>680-1,400</td>
<td>4,200-16,800</td>
</tr>
<tr>
<td>Vans</td>
<td><1</td>
<td>30-60</td>
<td>100-200</td>
<td>750-3,000</td>
</tr>
<tr>
<td>HDVs</td>
<td><1</td>
<td>3</td>
<td>8</td>
<td>130</td>
</tr>
</tbody>
</table>

Projections are based on policy-led uptake scenarios presented on page 9.

Data supported quantification of infrastructure requirements.
Industry and government will need to work closely to secure the deployment of the early public HRS network and hydrogen vehicles

Securing deployment of the early public HRS network

- A certain number of HRS (e.g. 65 set out by the H₂Mobility strategy) is likely to be needed to meet the needs of the earliest customers and to continue to attract OEMs to the UK
- Low utilisation means that these early HRS will need public funding to attract private investment
- HRS investors will also require confidence from vehicle suppliers on the timing and ambition of vehicle deployments
- Customer incentives are likely to be needed to encourage early vehicle sales as OEMs transition to lower cost second generation vehicles
- The network will also need to offer a consistent and high quality customer experience, in terms of the station ‘look and feel’, ease of use, payment methods etc.

Recommendations

Central Government: Provide financial support to early HRS, using funding conditions to ensure high quality user experience and coherent geographic strategy. Provide support to vehicles through existing ULEV incentives

Local Government: Help provide ‘base load’ demand to public HRS (e.g. FCEV procurement for public fleets) and make sites available for refuelling stations where possible

OEMs: Provide transparency on numbers and locations of vehicle deployments (as far as possible) to maximise confidence of HRS investors

HRS operators/suppliers: Work closely with vehicle suppliers and their customers to ensure that HRS siting and specifications meet their needs

Source: Element Energy
Ensuring infrastructure is compatible with all vehicle types and publicly accessible will maximise station utilisation

Maximising utilisation of early stations

- Early network is likely to use 700 bar refuelling, based on requirements of OEM passenger cars
- Other vehicle types (e.g. vans, small trucks) currently use 350 bar tanks which are not compatible with higher pressure dispensers
- The use of dual-pressure stations (700/350bar) allows public HRS to meet refuelling demands of these vehicles, increasing early usage where demand exists
- Fleet vehicle users should also be encouraged to use public HRS rather than depot solutions where feasible to further increase utilisation

Recommendations

HRS investors: Work with vehicle suppliers to identify needs for dual-pressure HRS sites

Local government: Encourage fleet stations to be publicly accessible for private customers where feasible (e.g. through planning system)

Coordination

- As the network grows, coordination of HRS siting is likely to be needed to optimise coverage and customer convenience
- Coordination is also likely to be needed on cross-cutting topics e.g. securing deployments of ‘green hydrogen’ production capacity, metering and billing, progress towards fully forecourt-integrated stations
- If use of standalone HRS continues, HRS operators should work closely to define a consistent approach to siting and ‘look and feel’ to allow drivers to find and use the infrastructure

Recommendations

All H₂ stakeholders: Identify an appropriate forum to allow discussion of these coordination activities, and to present an aligned UK strategy in outreach to international OEMs to maximise appetite to bring vehicles to the UK

Source: Element Energy
Existing regulations should be amended to harmonise the planning approval process, thereby streamlining infrastructure installation.

Siting and planning process

- Lack of guidance on HRS safety requirements can lead to planning delays and inconsistent user experience
- Transition from standalone to forecourt-integrated sites likely towards 2020
- Work to include hydrogen in the Blue Book\(^1\) is underway to represent hydrogen, in particular addressing electrical hazardous zones and safety distances, giving clear guidance for use by developers and petroleum officers in designing and approving HRS on forecourts

Recommendations

Local Authority planning teams and regulatory authorities: Support the approval of integrating hydrogen infrastructure into existing forecourts; produce guidance documents for standalone HRS

Innovation opportunities

- Reducing the cost of HRS, \(\text{H}_2\) production and distribution and vehicles will be required to allow mass-market deployments
- Quality assurance of \(\text{H}_2\) (lower cost analysis, continuous monitoring etc.) needs to be further developed and standardised
- Engineering solutions are required for large scale depot refuelling beyond current fleet sizes (e.g. c.100 bus depot requiring c.2 tonnes/day)
- Full integration of water electrolysers into the grid will require further trials of technical and commercial arrangements

Recommendations

Innovation funding bodies: Work with industry to define clear innovation needs that can be delivered through R&D funding and trials

\(^1\)National Guidance document jointly published by the Energy Institute and Association for Petroleum and Explosives (APEA) used to assess and sign off the safety of new forecourt installations and upgrades
New policy may be required in the medium term to ensure that the future hydrogen production mix delivers CO₂ emissions savings

Hydrogen production pathways

- Current UK hydrogen production capacity is insufficient to meet transport demand from the mid 2030s
- Therefore new production capacity will need to be introduced concurrently with vehicle demand growth, taking into account GHG emission reduction targets
- A strategy will be needed on how this capacity will be delivered (based on the expected volumes of hydrogen vehicles) while ensuring that the overall production mix delivers very low well-to-wheel emissions

Recommendations

Central Government: Consider policy mechanisms to ensure sufficient volumes of low carbon hydrogen sources

R&D bodies: Investigate low cost green hydrogen production technologies

Technologies available for H₂ production, their costs and CO₂ emissions

1. Distributed water electrolysis
2. Conventional water electrolysis
3. Coal gasification + carbon capture and storage
4. Centralised SMR + carbon capture and storage
5. IGCC + carbon capture and storage
6. Distributed steam methane reforming
7. Conventional steam methane reforming
8. Internal gasification combined cycle
9. Coal gasification

Targets: technical targets to reduce carbon footprint of hydrogen as a transport fuel
Liquid fuels (petrol and diesel) are the current dominant fuels for all road transport vehicles and as such have a extensive distribution and refuelling systems, for both public forecourts and private bunkering.

Demand for liquid fuels in transport will significantly decrease post-2030, with a total decrease of 50% to 80% by 2050 compared to today (depending on the uptake of Plug-in hybrid EV vs. battery or fuel cell EVs).

The case of LPG is different, with a possible increase in demand (mostly based on Air Quality policy drivers) from c. 100 kt today to around 300-400 kt by 2030, well within UK production capacity.

Among niche/future fuels investigated, liquid air is the most promising one, especially for transport refrigeration units.

The extensive national infrastructure supporting the UK’s liquid transport fuel demand can be divided into three streams:

Crude oil refineries

- Over 70% of total imported crude oil deliveries are for transport demand.
- Total delivered petroleum in 2011: 30 million tonnes/year.

Coastal refined oil import terminals

- Total: 20-30.

Inland terminals

- Total: c.50.

Distribution

- 51% via pipeline
- 15% via rail
- 34% by sea

Liquid fuel transport demand

Million tonnes/year

<table>
<thead>
<tr>
<th>Year</th>
<th>Light vehicles (petrol & diesel)</th>
<th>Heavy vehicles (diesel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>2030</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>2050</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

Based on vehicle uptake scenarios presented p. 9, they assume a 50:50 split between diesel & petrol cars.
With a predicted demand decrease for liquid fuels, forecourts may have to integrate new fuels and/or receive support in certain locations.

Infrastructure roadmap

- **Public forecourts**
 - Coverage
 - Integration
 - E20 forecourt investment

- **Private depots**
 - Diesel
 - Niche fuels
 - LPG

Legend
- Cost
- Stations
- Technical

Public selling points

Liquid fuel vehicle stock

<table>
<thead>
<tr>
<th>Year</th>
<th>Cars</th>
<th>Vans</th>
<th>HDVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>30,000</td>
<td>4,000</td>
<td>700</td>
</tr>
<tr>
<td>2025</td>
<td>32,000</td>
<td>4,300</td>
<td>700</td>
</tr>
<tr>
<td>2030</td>
<td>32,000</td>
<td>4,300</td>
<td>700</td>
</tr>
<tr>
<td>2050</td>
<td>6,000-31,000</td>
<td>1,000-5,000</td>
<td>360</td>
</tr>
</tbody>
</table>

By 2050 cars are mostly RE-EVs / PHEVs.

50-80% decrease in fuel demand on 2015 levels.

Projections are based on policy-led uptake scenarios presented on page 9.

Data supported quantification of infrastructure requirements.

Dashed lines represent high uncertainty.
Delays to planning to modify forecourts should be minimised to avoid investor uncertainty and financial support may be needed in certain areas

<table>
<thead>
<tr>
<th>Station economics and support</th>
<th>Planning permission guidance</th>
<th>Innovation opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steep decline in demand beyond 2030 is likely to significantly impact commercial viability of fuel retailing, (particularly for small public forecourts located in rural areas of the UK to start with, but more widespread issue in long term)</td>
<td>Acquiring planning permission to upgrade existing forecourt facilities can often be delayed or rejected</td>
<td>Biodiesel and bioethanol require additional handling considerations</td>
</tr>
<tr>
<td>A transition to a higher biofuel blend will require large investments for tank replacements and/or upgrades</td>
<td>Delays for upgrade approval can cause partial unavailability and negatively impact commercial operation, thereby directly accelerating forecourt closure, particularly for underutilised areas</td>
<td>Higher bioethanol blends can damage regular refuelling facilities by causing stress corrosion cracking of steel and degradation of elastomers, therefore significant investment will be required to upgrade existing infrastructure</td>
</tr>
</tbody>
</table>

Recommendations

Central Government: Consider mechanisms to ensure minimum filling station coverage, particularly in rural areas

Local Authorities: Identify any local supply shortages and forecourts most affected by declining fuel demand

Central Gov. and LAs: Work with regulators to identify common causes of delays and improve planning permission guidelines as appropriate

R&D bodies: Investigate cost reduction opportunities for station upgrades to handle higher biofuel blends

Source: Element Energy
As declining liquid fuel demand causes station closures, facilitating optimal use of remaining forecourts is likely to be required

4 Multi-fuel infrastructure integration

- The transport system is expected to be decarbonised through multiple alternative fuels / energy vectors
- Existing forecourts are strategically sited to optimally service driver needs by major roads and junctions
- Co-locating infrastructure for multiple fuels at forecourts could ensure utilisation is maintained

Recommendations

Regulators: Develop standards for co-locating multiple infrastructures and work with central government to develop planning guidance for Local Authorities

R&D bodies: Identify technical barriers to co-locating multiple infrastructures (e.g. high power rapid charge points adjacent to liquid fuels)

Industry and gov.: Liaise with APEA to update Blue Book\(^1\) accordingly

5 Communication of forecourt availability

- As forecourt closures continue (and new blends are introduced), there will be an increasing need to ensure drivers can easily access information detailing station & blend availability and location
- Communication systems to inform drivers of real-time fuel availability at nearby public forecourts supported by a national database could be developed
- Central coordination of software development will ensure a consistent interface between drivers and public infrastructure e.g. allowing use with existing navigation system providers

Recommendations

Industry: Develop communication system

\(^1\)National Guidance document jointly published by the Energy Institute and Association for Petroleum and Explosives (APEA) used to assess and sign off the safety of new forecourt installations and upgrades
<table>
<thead>
<tr>
<th>Methanol</th>
<th>Liquid Air (LAIR)</th>
<th>E85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulted industry stakeholders are doubtful of the potential of methanol in the UK, on the basis of safety concerns and need for new HGVs engine development (HGVs are target vehicles for methanol in the UK)</td>
<td>Existing liquid nitrogen (LIN) production will be used first, before dedicated liquid air production is started</td>
<td>Consulted industry stakeholders are doubtful of the potential of E85, on the basis of the lack of vehicle supply, barriers to adoption of new grade at inland terminals and forecourts and low energy content (adding issue to consumer acceptance and fuel duty issue if price parity with E5/E10 (per km) must be supported)</td>
</tr>
<tr>
<td>Furthermore, the air quality benefits and CO₂ benefits are not unclear</td>
<td>LIN/LAIR will be used mostly for cooling and/or for hybrid applications, as opposed to becoming a prime mover</td>
<td>Adoption of E85 could not be possible if E20 is adopted (limit to number of grades)</td>
</tr>
<tr>
<td>If used for UK transport, high blend methanol will likely be bunkered (not at forecourts)</td>
<td>It is expected LAIR will be used exclusively by fleets with depot refuelling</td>
<td>Distribution would be as for E10: blended at inland terminals and transported by trucks to forecourts</td>
</tr>
<tr>
<td>UK would need to develop codes of practise for storage and handling of methanol as well as planning guidance; input from industry players and countries familiar with methanol will be valuable</td>
<td>Specialist skilled workers will be needed for liquid air distribution (e.g. cryogenic engineers and technicians)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skill-set overlap with other sectors must be investigated and consistent training programmes developed as required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production of LIN / LAIR require electricity but the energy vector can also be used as a form of energy storage</td>
<td></td>
</tr>
</tbody>
</table>

Source: Element Energy and industry input
Local Authorities will have a significant role in the delivery of the Infrastructure Roadmap

- In practice, the Infrastructure Roadmap must be translated into infrastructure strategies developed and led at local level as demand for fuels and opportunities are specific to a region/city. Cities also have varying focus on CO₂ emissions or Air Quality issues.
- Local refuelling strategies must account for:
 - the local demand from fleet and public transport, and the current infrastructure in place
 - the local opportunities for production of low carbon fuel or distribution (e.g. access to high pressure gas grid, to high voltage network)

Specific actions LAs can take to support the rollout of refuelling infrastructure

- **Encourage and contribute to the uptake of low carbon vehicles** – e.g. adoption in Council fleet, setting local incentives
- **Use planning guidance to deliver strategy recommendations for infrastructure** – e.g. regarding siting and technical specifications
- **Assist infrastructure providers in finding/assessing land for installation** – e.g. identify owner, provide road access and traffic data
- **Streamline planning processes for renewable fuel production and infrastructure**
- **Include low carbon fuels for transport into the development of energy system strategies** – e.g. transport considerations can be integrated to review of waste strategy (biomethane can produce heat, electricity or used as fuel)
- **Work closely with private fleets on demonstration and deployment activities for low carbon vehicles** – e.g. encourage formation of stakeholder group for experience sharing, joint procurement and consortia formation for funding

Birmingham City strategy

Source: Element Energy for Birmingham City Council, A City Blueprint for Low Carbon Fuel refuelling Infrastructure, 2015
Contents

Background and objectives

Approach

Transport Infrastructure Roadmaps

Conclusions
The deployment of public refuelling infrastructure for transport will require significant new investment and long term policy clarity.

Investment to deliver the future refuelling/recharging infrastructure will require:

- **Strong confidence for private investors**, i.e. clear and long term government position for different fuels and policy drivers, confidence in long term revenues to justify upfront investment.

- **Funding support in some cases** in early years (when asset utilisation levels are low).

- **Coordination across government, regulators and industry** to remove certain barriers to installation of new infrastructure e.g. lack of/unclear planning guidance, harmonisation of safety procedures, integration of new fuels in existing forecourts.

1 Includes stations capital costs only, opportunities for cost reduction to 2050 are not included. Investment related to grid reinforcement not included.
Both central and local Governments and industry have roles to play in this deployment – coordination of efforts will be needed

<table>
<thead>
<tr>
<th>Role of Central Government</th>
<th>Role of Local Authorities</th>
<th>Role of industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ The Roadmap could be used for future policy design, for example supporting early infrastructure investments, mechanisms to encourage continued/increased production of low carbon fuels, targeted R&D activities, identifying strategic needs in specific UK locations</td>
<td>▪ The Roadmap could be translated into local strategies developed and led at local level as demand for fuels and opportunities are specific to a region/city with varying focus on CO₂ emissions or AQ issues</td>
<td>▪ The Roadmap highlights the importance of deploying a nationally harmonised infrastructure for each fuel type requiring an industry led, coordinated approach</td>
</tr>
<tr>
<td>▪ Coordinating LAs and communicating consistent infrastructure planning guidelines will avoid delays and ensure consistent infrastructure rollout</td>
<td>▪ Local strategies should consider local demand from fleet and public transport, existing infrastructure, and local opportunities for production and/or distribution of low carbon fuel</td>
<td>▪ This role extends to ensuring a consistent and high quality customer offer for new fuels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Industry are also well positioned to pursue infrastructure cost reduction opportunities provided a business case can be established</td>
</tr>
</tbody>
</table>

AQ = Air Quality, LA = Local Authorities
End user experience key to acceptance and uptake of new fuels; further innovation is required to fully meet the needs of mass-market customers

- Ensuring sufficient access to public refuelling/recharging infrastructure as well as harmonising the end user experience of infrastructure is key to supporting low emission vehicle uptake

- **Innovation** will be needed:
 - Communication/IT solutions: for sharing charge points or refuelling stations across private users, for new services such as dynamic booking, forecourt choice and availability
 - Technologies: e.g. to identify most appropriate recharging technology for depots; hydrogen metering and quality assurance; optimising equipment for handling higher biofuel blends
 - Commercial arrangements: e.g. to minimise network impact of EVs with ‘smart’ solutions (e.g. Demand Side Management) allow water electrolysers to secure revenues from providing grid services

- **Minimising WTT emissions** associated with production and logistics of fuels (in particular methane and hydrogen as decarbonisation targets are already in place for electricity) should be considered for future infrastructure siting and technology selection decisions
The Infrastructure Roadmap will have to be updated to evolve with the expected innovations in both refuelling and vehicle technologies.

- The roadmap captures the future infrastructure development needs based on today’s knowledge of refuelling/recharging technologies and based on ambitious uptake scenarios for alternative fuels.
- The Roadmap will have to be updated on a regular basis for its outputs to remain relevant as technologies evolve:
 - Innovations on infrastructure technologies are expected, especially around charging technologies, where deployment of new solutions could significantly change the strategy (e.g. dynamic wireless vs. ultra fast charging).
 - Vehicles are expected to change too, notably with the introduction of autonomous vehicles. Opportunities and development enablers for autonomous vehicles to refuel/recharge during non-operational windows, thus removing the need for driver-infrastructure interaction need to be better understood and included in future roadmaps.

Source: Element Energy
Acronyms and references
Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEV</td>
<td>Battery Electric Vehicle</td>
</tr>
<tr>
<td>CCC</td>
<td>Committee on Climate Change</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas</td>
</tr>
<tr>
<td>COMAH</td>
<td>Control of Major Accident Hazard</td>
</tr>
<tr>
<td>CP</td>
<td>Charge Point</td>
</tr>
<tr>
<td>DECC</td>
<td>Department of Energy & Climate Change</td>
</tr>
<tr>
<td>DfT</td>
<td>Department for Transport</td>
</tr>
<tr>
<td>DNO</td>
<td>Distribution Network Operators</td>
</tr>
<tr>
<td>DSR</td>
<td>Demand Side Response</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ETI</td>
<td>Energy Technologies Institute</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>FCEV</td>
<td>Fuel Cell Electric Vehicle</td>
</tr>
<tr>
<td>FCH JU</td>
<td>Fuel Cell Hydrogen Joint Undertaking</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HGV</td>
<td>Heavy Goods Vehicle</td>
</tr>
<tr>
<td>HRS</td>
<td>Hydrogen Refuelling Station</td>
</tr>
<tr>
<td>HSE</td>
<td>Health and Safety Executive</td>
</tr>
<tr>
<td>ICE</td>
<td>Internal Combustion Engine</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electro-technical Commission</td>
</tr>
<tr>
<td>IGEM</td>
<td>Institute for Gas Engineers and Managers</td>
</tr>
<tr>
<td>ktpa</td>
<td>thousands tonnes per annum</td>
</tr>
<tr>
<td>LA</td>
<td>Local Authority</td>
</tr>
<tr>
<td>LBM</td>
<td>Liquid Biomethane</td>
</tr>
<tr>
<td>LCNG</td>
<td>Liquefied and Compressed Natural Gas</td>
</tr>
<tr>
<td>LIN</td>
<td>Liquid Nitrogen</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>LTS</td>
<td>Local Transmission System</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tonnes</td>
</tr>
<tr>
<td>NGVA</td>
<td>Natural Gas Vehicle Association</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OLEV</td>
<td>Office for Low Emission Vehicles</td>
</tr>
<tr>
<td>PAYG</td>
<td>Pay AS You Go</td>
</tr>
<tr>
<td>PHEV</td>
<td>Plug-in Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>REEV</td>
<td>Ranger Extender Electric Vehicle</td>
</tr>
<tr>
<td>SGF</td>
<td>Smart Grid Forum</td>
</tr>
<tr>
<td>SME</td>
<td>Small and medium enterprises</td>
</tr>
<tr>
<td>SMR</td>
<td>Steam Methane Reforming</td>
</tr>
<tr>
<td>STOR</td>
<td>Short Term Operating Response</td>
</tr>
<tr>
<td>TEN-T</td>
<td>Trans-European Transport Networks</td>
</tr>
<tr>
<td>ToU</td>
<td>Time of Use</td>
</tr>
<tr>
<td>TSO</td>
<td>Transmission system operator</td>
</tr>
<tr>
<td>TTW</td>
<td>Tank-to-Wheel</td>
</tr>
<tr>
<td>ULEV</td>
<td>Ultra-Low Emissions Vehicle</td>
</tr>
<tr>
<td>WE</td>
<td>Water Electrolysis</td>
</tr>
<tr>
<td>WTT</td>
<td>Well-to-Tank</td>
</tr>
<tr>
<td>WTW</td>
<td>Well-to-Wheel</td>
</tr>
</tbody>
</table>
Main references

- A portfolio of power-trains for Europe: a fact-based analysis, 2011
- AEA for DfT, Modes 3 study, 2011
- DECC, Energy consumption in the UK, 2014
- DfT presentation at NGV day, Low Carbon Truck and Refuelling Infrastructure Demonstration Trial Evaluation, June 2014
- DFT, RTFO Biofuel Statistics, 2014
- DUKES Chapter 3, 4, 5, 2015
- ECF, Fuelling Europe’s Future: How auto innovation leads to EU jobs, 2013
- Ecofys, UK Biofuel Industry overview, 2013
- Element Energy for Birmingham City Council, A City Blue Print for Low Carbon Fuel Refuelling Infrastructure, 2015
- Element Energy for CLNR, Review of existing commercial arrangements and emerging best practice, 2013
- Element Energy for the Committee on Climate Change, Infrastructure in a low-carbon energy system to 2030: Transmission and distribution, 2013
- Element Energy, Ecolane and al. for the Committee on Climate Change, Pathways to high penetration of EVs, 2013
- ERTRAC, Energy Carriers for Powertrains, 2014
- ETI, An affordable transition to sustainable and secure energy for light vehicles in the UK, 2013
- JRC, WTT analysis of future automotive fuels and powertrains in the European context, 2014
- National Grid, Future Energy Scenarios, 2014
- Ricardo AEA, Assessment of the existing UK infrastructure capacity and vehicle fleet capability for the use of biofuels, 2011
- Roads2Hycom Deliverable 2.1 and 2.1a, 2007
- Smart Grid Forum, Assessing the Impact of Low Carbon Technologies on UK power distribution, 2012
- UK H2Mobility Phase 1, public report, 2013
- UKPIA, Statistical Review, 2014

Refer to the Technical Appendix (issued separately) for a full list of references